РОЖДЕНИЕ УСТОЙЧИВОГО ТОРА ИЗ ЗАМКНУТОЙ ОСОБОЙ КРИВОЙ И ЕГО БИФУРКАЦИИ В ЛАЗЕРНОЙ СИСТЕМЕ С ОТСТРОЙКОЙ ЧАСТОТЫ
Образец для цитирования:
Показано, что в модели Максвелла–Блоха реализуется режим устойчивых двухчастотных колебаний. Установлено, что происходит рождение устойчивого двумерного эргодического тора из замкнутой особой кривой. Найдены условия перехода к хаосу через каскад бифуркаций удвоения периода тора. Установлено, что в точках бифуркаций удвоения рождается структурно неустойчивый трехмерный тор, который порождает устойчивый удвоенный эргодический тор. Найдена аналитическая аппроксимация, удовлетворительно описывающая динамику системы вблизи точки рождения тора.
1. Lorenz E.N. Deterministic nonperiodic flow // J. Atm. Sci. 1963. Vol. 20 P. 130.
2. Грасюк А.З., Ораевский А.Н. // Труды IV Международного конгресса по лампам СВЧ. Голландия, Шевининген, 1962. Труды 31 курса летней школы Энрико Ферми. Италия, Варенна, 1963.
3. Ораевский А.Н. Мазеры, лазеры и странные аттракторы // Квантовая электроника. 1981. Т. 8, No 1. С. 130.
4. Haken H. Analogy between higher instabilities in fluids and lasers // Phys. Lett. A. 1975. Vol. 53. P. 77.
5. Letellier C. Modding out a continuous rotation symmetry for disentangling a laser dynamics // International Journal of Bifurcation and Chaos. 2003. Vol. 13, No 6. P. 1573.
6. Weiss C.O., Larionova Ye. Pattern formation in optical resonators // Rep. Prog. Phys. 2007. Vol. 70. P. 255.
7. Hollinger F., Jung Chr., Weber H. Simple mathematical model describing multitransversal solid-state lasers // J. Opt. Soc. Am. B. 1990. Vol. 7, No 6. P. 1013.
8. Hollinger F., Jung Chr. Single-longitudinal-mode laser as a discrete dynamical system // J. Opt. Soc. Am. B. 1985. Vol. 2, No 1. P. 218.
9. Cabrera E., Calderon O.G., Melle S., Guerra J.M. Development of spatial turbulence from boundary-controlled patterns in class-B lasers // Phys. Rev. A. 2006. Vol. 73. 053820.
10. Huyet G., Tredicce J.R. Spatio-temporal chaos in the transverse section of lasers // Physica D. 1996. Vol. 96. P. 209.
11. Huyet G., Martinoni M.C., Tredicce J.R., Rica S. Spatiotemporal dynamics of lasers with a large Fresnel number // Phys. Rev. Lett. 1995. Vol. 55. P. 738.
12. O‘Neil E., Houlihan J., McInerney J.G., Huyet G. Dynamics of traveling waves in the transverse section of a laser // Phys. Rev. Lett. 2005. Vol. 94. 143901.
13. Jacobsen P.K., Moloney J.V., Newell A.C., Indik R. Space-time dynamics of widegain-section lasers // Phys. Rev. A. 1992. Vol. 45, No 11. P. 8129.
14. Jacobsen P.K., Lega J., Feng Q., Staley M., Moloney J.V., Newell A.C. Nonlinear transverse modes of large-aspect-ratio homogeneously broadened lasers: I. Analysis and numerical simulation // Phys. Rev. A. 1994. Vol. 49, No 5. P. 4189.
15. Jacobsen P.K., Lega J., Feng Q., Staley M., Moloney J.V., Newell A.C. Nonlinear transverse modes of large-aspect-ratio homogeneously broadened lasers: II. Pattern analysis near and beyond threshold // Phys. Rev. A. 1994. Vol. 49, No 5. P. 4201.
16. Заикин А.П., Молевич Н.Е. Влияние скорости кросс-релаксации на поперечную динамику излучения широкоапертурного лазера // Квантовая электроника. 2004. Т. 34, No 8. С. 731.
17. Заикин А.П., Кургузкин А.А., Молевич Н.Е. Периодические автоволновые структуры в широкоапертурном лазере с отстройкой частоты. 1. Бифуркационный анализ // Квантовая электроника. 1999. Т. 27, No 3. С. 246.
18. Заикин А.П., Кургузкин А.А., Молевич Н.Е. Периодические автоволновые структуры в широкоапертурном лазере с отстройкой частоты. 2. Распределенная модель // Квантовая электроника. 1999. Т. 27, No3. С. 249.
19. Заикин А.П., Кургузкин А.А., Молевич Н.Е. Влияние отстройки частоты на пространственно-временную структуру оптического поля широкоапертурного лазера // Изв. вузов. Прикладная нелинейная динамика. 1999. Т. 7, No 5. С. 87.
20. Кренц А.А., Молевич Н.Е. Каскад бифуркаций удвоения тора в лазере с отстройкой частоты // Квантовая электроника. 2009. Т. 39, No 8. С. 751.
21. Amroun D., Brunel M., Letellier C., Leblond H., Sanchez F. Complex intermittent dynamics in large-aspect-ratio homogeneously broadened single-mode lasers // Physica D. 2005. Vol. 203. P. 185.
22. Lugiato L.A., Oldano C., Narducci L.M. Cooperative frequency locking and stationary spatial structures in lasers // J. Opt. Soc. Am. B. 1988. Vol. 5. P. 879.
23. Эрроусмит Д., Плейс К. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями. М.: Мир, 1986.
24. Кузнецов С.П. Динамический хаос: Курс лекций. М.: Изд-во Физико-математической литературы, 2001.
25. Шустер Г. Детерминированный хаос: Введение. М.: Мир, 1988.
26. Анищенко В.С., Николаев С.М. Генератор квазипериодических колебаний. Бифуркация удвоения двумерного тора // Письма в ЖЭТФ. 2005. Т. 31, вып. 19. С. 88.
27. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.
28. Zeghlache H., Mandel P. Influence of detuning on properties of laser equations // J. Opt. Soc. Am. B. 1985. Vol. 2, No 1. P. 18.
BibTeX
author = {Антон Анатольевич Кренц and Нонна Евгеньевна Молевич },
title = {РОЖДЕНИЕ УСТОЙЧИВОГО ТОРА ИЗ ЗАМКНУТОЙ ОСОБОЙ КРИВОЙ И ЕГО БИФУРКАЦИИ В ЛАЗЕРНОЙ СИСТЕМЕ С ОТСТРОЙКОЙ ЧАСТОТЫ},
year = {2010},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {18},number = {5},
url = {https://old-andjournal.sgu.ru/ru/articles/rozhdenie-ustoychivogo-tora-iz-zamknutoy-osoboy-krivoy-i-ego-bifurkacii-v-lazernoy-sisteme},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-5-67-80},pages = {67--80},issn = {0869-6632},
keywords = {Широкоапертурные лазеры,бифуркация удвоения периода тора,эргодический тор,хаос.},
abstract = {Показано, что в модели Максвелла–Блоха реализуется режим устойчивых двухчастотных колебаний. Установлено, что происходит рождение устойчивого двумерного эргодического тора из замкнутой особой кривой. Найдены условия перехода к хаосу через каскад бифуркаций удвоения периода тора. Установлено, что в точках бифуркаций удвоения рождается структурно неустойчивый трехмерный тор, который порождает устойчивый удвоенный эргодический тор. Найдена аналитическая аппроксимация, удовлетворительно описывающая динамику системы вблизи точки рождения тора. }}