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APPROXIMATE SYNCHRONIZATION OF CHAOTIC ATTRACTORS

Oscar de Feo, Martin Hasler

This work presents a dynamical phenomenon strongly related with the problems of synchro-
nization and control of chaotic dynamical systems. Considering externally driven homoclinic
chaotic systems, it is shown experimentally and theoretically that they tend to synchronize with
signals strongly correlated with the saddle cycles of their skeleton; furthermore, when they are
perturbed with a generic signal, uncorrelated with their skeleton, their chaotic behavior is rein-
forced. This peculiar behavior of approximate synchronization has also been called qualitative
resonance, underlining the fact that such chaotic systems tend to resonate/synchronize with
those signals which are qualitatively similar to an observable of their skeleton.

Introduction

Since the pioneering works of Afraimovich, Verichev, and Rabinovich [1], a consi-
derable investigative effort has been dedicated to the problem of synchronization of chaotic
dynamical systems as well as to the problem of their control. In this work, a dynamical
phenomenon strongly related to these two problems is introduced and its analysis, both
experimental and theoretical, is presented. In particular, it is shown that different dynam-
ical models (ordinary differential equations) admitting chaotic behavior organized by a
homoclinic bifurcation (here called Shil’nikov-like chaotic systems) tend to have a quite
particular selective property when externally perturbed. Namely, these systems settle on
a very narrow chaotic behavior, which is strongly correlated to the forcing signal, when
they are slightly perturbed with an external signal which is similar to their correspond-
ing generating cycle (GC). Here, the «generating cycle» is understood to be the saddle
cycle colliding with the equilibrium at the homoclinic bifurcation or, in other words, the
lowest period cycle embedded in the Shil’nikov-like chaotic attractor. On the other hand,
when they are slightly perturbed with a generic signal, with no particular correlation with
their GC, their chaotic behavior is reinforced. This peculiar sympathetic behavior of ap-
proximate synchronization has also been called «qualitative resonance» (QR) [2, 3]. This
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name wants to highlight the fact that such chaotic systems tend to resonate with those sig-
nals which are qualitatively similar to an observable of their corresponding GC. Indeed,
when approximately synchronizing, the behavior of the forced system shrinks from a wide
chaotic attractor to a very narrow one, which is very similar to a resonating torus which
is shrinking from many modes to few ones. Moreover, this name has also been chosen to
distinguish this phenomenon from proper synchronization; because, even if related to it,
the observed behavior is not, rigourously speaking, strict synchronization.

The paper is organized as follows: first, the QR phenomenon is introduced and
previous results [2, 3] about it are briefly recalled; second, a linear explanation of the
phenomenon is given together with a geometrical conjecture of it; finally, the geometrical
conjecture is confirmed by means of bifurcation analysis.

1. The Qualitative Resonance Phenomenon

Given a generic error driven dynamical system (Eq. (1)) admitting Shil’nikov-like
chaotic behavior when there is no external control (K = 0):

ẋ = F (x) + K
(
y − u(t)

)
, x ∈ Rn, F : Rn 7→ Rn

y = H(x), y ∈ Rm, H : Rn 7→ Rm, m < n
(1)

the system is slightly (i.e. small value of ‖K‖) perturbed with different kinds of perturbing
signals u(t), some strongly related to the GC of the Shil’nikov-like strange attractor and
some not. For each given driving signal, the system’s steady state is classified as follows:
whenever the steady state is shrinking to a periodic solution or to a chaotic solution with
a very small variance with respect to the GC, i.e. something very close to a limit cycle,
the ensemble is said to qualitatively resonate or to approximately synchronize [2, 3]; on
the other hand, whenever the steady state is chaotically wandering, the ensemble is said
to not qualitatively resonate or to anti-resonate/synchronize.

More precisely, K is considered slightly perturbing the system if:

max
x∈SA

u(t)=y(t), y∈GC

∥∥∥K
(
y − u(t)

)∥∥∥ <
1
β
E

[∥∥F (x)
∥∥

∣∣∣∣x ∈ SA
]
, β > 1

where x, y ∈ SA means that the state x or the corresponding output y are on the uncon-
trolled strange attractor (SA); u(t) = y(t), y ∈ GC means that the perturbing signal u(t)
is the time series of the output y while evolving on the GC; and, E[·] is the averaging
operation. In simple words, the maximal external perturbation on the evolution of the
system (LHS) must be at least β times smaller than the average natural evolution (RHS).
Furthermore, the system is classified as qualitatively resonating whenever the following
condition is satisfied:
∫ t

t−nTG

(
y(τ)− u(τ)

)2
dτ <

1
γ
E

[∫ t

t−nTG

(
y(τ)

∣∣
y∈SA

− y(τ)
∣∣
y∈GC

)2
dτ

]
, γ > 1, n ∈ N

(2)
where TG is the period of the GC. In simple words, a system is said to be resonant when
the driven trajectories (LHS) are γ time closer to the perturbing signal u(t) than what is
expected to be the free strange attractor to the GC (RHS).
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1.1. Experimental Evidence. In [2] experimental evidence of QR occurring in
Shil’nikov-like chaotic systems has been reported. To have a feeling about the phenomena,
here some of the results reported in [2] are shown. Fig. 1 reports the occurrence of QR in
the Colpitts oscillator [4] perturbed with fine or coarse piecewise linear approximations of
its observable y = x2 while evolving on the GCs of different strange attractors, where the
GCs have been obtained by numerical continuation [5, 6].

2. Working Principles of Qualitative Resonance

It is intuitive to explain the QR phenomenon in the case of resonance with the
clean signal coming from the GC. Such a case correspond to a simple reconstruction of
a periodic linear system [7], i.e. just a particular case of synchronization between chaotic
systems. In fact, consider an autonomous nonlinear system like (1) with K = 0, and
suppose that the system admits a periodic solution of period T

x̂(t) : x̂(t + T ) = x̂(t), ˙̂x(t) = F (x̂(t)), ŷ(t) = H(x̂(t)),

then x̂(t) is also a periodic solution of the nonautonomous system with K 6= 0,
∀K : dim(K) = n×m. Furthermore, under suitable conditions, x̂(t) is a stable solution
of the nonautonomous (K 6= 0) system independently from its stability in the autonomous
(K = 0) system. Indeed, system (1) can be linearized around the periodic solution x̂(t)
leading to a periodic linear system

δ̇x = A(t)δx−K (y − ŷ)︸ ︷︷ ︸
δy

,

δy = C(t)δx.

(3)

In control theory [8] it is known that if the couple (A(t), C(t)) is observable then the
characteristic multipliers of system (3) can be arbitrarily assigned and, if the observation
matrix C(t) is a constant matrix, this can be done with a constant matrix K. Then, the
stability of the solution δx(t) = 0 of system (3) corresponds to the asymptotic stability
of the periodic solution x̂(t) of system (1) provided that the Jacobian matrix A(t) and the
reference signal ŷ(t) are almost in phase. Namely, provided that the state x(t) of system (1)
univocally identifies the periodic time t mod T in system (3), since one is an autonomous
nonlinear system while the other is a time-varying linear system. In a Shil’nikov-like
strange attractor, this condition is implicitly satisfied since the phase changes randomly
whenever the trajectory passes nearby the equilibrium bearing the homoclinic. Thus, if
the gain matrix K is such that Shil’nikov’s conditions are not violated, sooner or later the
driving signal and the state of the driven system will be in phase, and the linear control
theory will warrant the convergence to the GC. Concluding, the QR with the clean signal
coming from the GC of a Shil’nikov-like strange attractor is a straight consequence of the
random phase seeking of Shil’nikov-like chaos and of the periodic linear control theory.
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Fig. 1. Qualitative resonance for the Colpitts oscillator when driven with piecewise linear approximations of
the observable y = x2 corresponding to the n-pulse generating cycle of its strange attractors:a – qualitative
resonance with a fine piecewise linear approximation; b – driving signals corresponding to a; c – qualitative
anti-resonance with a coarse piecewise linear approximation; d – driving signals corresponding to c.
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2.1. Geometric Conjecture. The above control theory argument is also useful
to explain the occurrence of the QR phenomena for not so clean driving signals. When
a feedback matrix gain K is chosen, the asymptotic noise reduction ratio ( NRR) of the
input noise for the filter given by Eqs. (3) is uniquely defined (periodic Kalman Filter).
Therefore, feeding the system (1) with a signal ŷ(t)+ εin, when the signal and the system
will be phase, will lead the system to shrink close to the periodic solution x̂(t) as much
as predicted by the NRR. Therefore, since a very simple generalization of a cycle is a
Feigenbaum-like (period doubling) strange attractor, it follows that feeding the system (1)
with a Feigenbaum-like signal coming from a strange attractor lying on a Möbius strip
large ε will lead the system to shrink on a strange attractor NRR time narrower than that
of the source, similarly as what shown in Figs. 1, a.

Taking into account the geometrical structure of a Shil’nikov-like strange attrac-
tor, i.e. a Matrioshka containing infinite self-similar Feigenbaum-like strange saddles
(Fig. 2, a), the geometrical working principle of the QR is easily understandable. Be-
cause of the existence of infinite self similar skeleton saddle cycles that lie on the strange
attractor manifold, also a cycle built by a piecewise composition of arcs of skeleton cy-
cles which, consequently, lies on the manifold and satisfies the tachometric law on it, can
be stabilized by a similar procedure as the one described above. Obviously, such a new
cycle cannot be to much different from the skeleton cycles, because of its construction
constraints. Thus, it will be «just a generalization» of the stereotype cycles of the skeleton
leading to the QR phenomenon. A geometrical sketch of this working principle is given
in Fig. 2, b.

Finally, due to the fact that a Shil’nikov-like strange attractors lie on an almost one-
dimensional manifold which has a transversal attracting direction and is repulsive in the
directions that are parallel to this manifold, and since it has been assumed that the feedback
gain matrix K does not alter excessively the dynamic of the system, it follows that the
minimal K which stabilizes the periodic solution x̂(t) must mainly stabilize the repelling
direction while leaving almost unaltered the dynamics in the already stable direction.

Fig. 2. Geometrical explanation of QR: a – Matrioshka structure of a Shil’nikov-like attractor; b – the driving
forces of qualitative resonance in a Shil’nikov-like strange attractor.
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3. Mathematical Analysis of Qualitative Resonance

The previous section has given, on the basis of linear control theory and on the
basis of geometrical arguments, an explanation of how can it be argued that the signals
which can drive a Shil’nikov-like chaotic system to QR are those that can be obtained by
perturbing the GC in the direction of its stable manifold and, on the other hand, those that
drive the systems to anti-resonance can be obtained by perturbing it in the direction of
its unstable manifold. Such a conjecture is confirmed by an almost exhaustive and very
detailed bifurcation analysis of the phenomenon, conducted on several models combining
advanced continuation techniques [5, 6] with theoretical arguments [3].

3.1. Bifurcation Analysis. The behavior of system (1) perturbed with

u(t) = ŷ(t) + ε(t) = ŷ(t) + C
(
ep(t)δp + es(t)δs + eu(t)δu

)
, (4)

where ŷ(t) is the output y when the state evolves on the GC and ei(t) are the eigenvectors
of the monodromy matrix tangent to the center (p), stable (s), and unstable (u) manifolds
of the GC, has been analyzed with respect to the intensity (δi) of the perturbations in
the stable and unstable direction of the GC. The generic result is reported in Fig. 3, f
showing that indeed are the perturbations in the unstable direction which mainly lead to
anti-resonance. Furthermore, a 1D bifurcation analysis of the transition from qualitative

Fig. 3. (a-e): Route from resonance to anti-resonance:
a – Feigenbaum’s diagram of the attractors along the
path to anti-resonance; b – perfect locking; c – Narrow
Feigenbaum-like strange attractors;d – Shil’nikov-like
strange attractors; e – swapout effect; f – General bi-
furcation diagram of the qualitative resonance with re-
spect to perturbations in the unstable (δu) and stable
(δs) directions of the generating cycle
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resonance (point b in Fig. 3, a,c) to anti-resonance (point c in Fig. 3, a,d) shows that anti-
resonance occurs when the perturbations in the unstable direction lead the driven state to
get excessively close to the equilibrium bearing the homoclinic trajectory.

4. Remarks on Qualitative Resonance

Considering the above results together with the periodic control theory, it is possible
to conclude that an externally perturbed Shil’nikov-like chaotic system acts as a state
space reconstructor (periodic Kalman filter) with saturation. As long as the dynamics of
the driving signal is sufficiently similar to the natural dynamics of the driven system, the
latter tends to follow the driving signal attenuating its irregular fluctuations. When, on the
contrary, the dynamics of the driving signal is too far from that of the driven system, the
trajectory of the driven system is lead to approach the equilibrium bearing the homoclinic
trajectory, reinforcing in this way its chaotic dynamics.

Finally, since the transition from QR to anti-resonance is rather sharp, the QR
phenomenon can be exploited in practical problems of temporal pattern recognition [9,10].

This work was supported by the European project APEREST: IST-2001-34893 and
OFES-01.0456.
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КАЧЕСТВЕННЫЙ РЕЗОНАНС ХАОТИЧЕСКИХ АТТРАКТОРОВ

Оскар де Фео и Мартин Хаслер

В работе рассматривается динамическое явление, имеющее непосредственное
отношение к проблемам синхронизации и управления хаотическими динамическими
системами. Рассмотрена хаотическая система вблизи гомоклинической бифуркации,
управляемая внешним сигналом/системой. Показано, что если внешний сигнал каче-
ственно близок к одному из седловых циклов, «составляющих» странный аттрактор,
то ведомая система синхронизуется внешним сигналом. В противном случае синхро-
низация не наступает. Это резонансное поведение названо качественным резонансом
и исследовано теоретически и экспериментально.
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