

Изв. вузов «ПНД», т. 14, № 1, 2006

УДК 517.9

ИНИЦИИРОВАННЫЕ КОРОТКИМИ ИМПУЛЬСАМИ УСТОЙЧИВЫЕ КВАЗИПЕРИОДИЧЕСКИЕ И ПЕРИОДИЧЕСКИЕ РЕЖИМЫ В СИСТЕМЕ С НЕУСТОЙЧИВЫМ ПРЕДЕЛЬНЫМ ЦИКЛОМ

А.П. Кузнецов, Л.В. Тюрюкина

Рассматривается динамика системы с неустойчивым предельным циклом под периодической последовательностью δ-импульсов. Показано, что при наличии в системе кубической нелинейности в узкой области значений параметров внешнего воздействия наблюдаются устойчивые квазипериодические режимы и режимы захвата фазы (синхронизация). Изучено влияние основных параметров системы на возникновение таких режимов.

Введение

Явление синхронизации известно очень давно и тем не менее продолжает привлекать внимание исследователей. Классическая ситуация синхронизации состоит в том, что на автоколебательную систему с устойчивым предельным циклов воздействуют внешним периодическим (обычно гармоническим) сигналом [1–8]. В этом случае возможны режимы захвата частоты и квазипериодические режимы, соответственно, внутри и вне языков Арнольда на плоскости амплитуда – частота внешнего воздействия. При этом в фазовом пространстве реализуется либо устойчивый тор, либо устойчивый и седловой предельные циклы, возникающие на этом торе.

Эталонной системой для изучения явления синхронизации является находящаяся под гармоническим воздействием система Ван дер Поля, в которой имеет место бифуркация Андронова – Хопфа рождения устойчивого предельного цикла при переходе управляющего параметра λ через нуль,

$$\ddot{x} - (\lambda - x^2)\dot{x} + x = B\cos(2\pi t/T). \tag{1}$$

Здесь x – динамическая переменная, B и T – амплитуда и период внешнего воздействия.

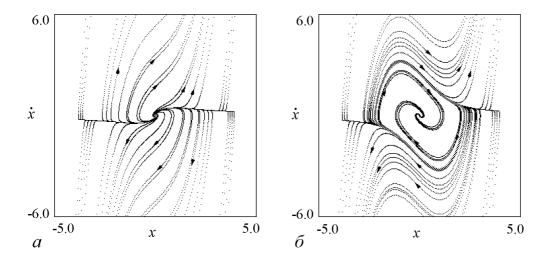


Рис. 1. Фазовые портреты автономной системы (2), $\lambda < 0$ (*a*) и $\lambda > 0$ (*б*)

Рассмотрим (пусть отчасти и формально) ситуацию, когда в системе (1) обращено время. В этом случае мы с очевидностью приходим к уравнению

$$\ddot{x} + (\lambda - x^2)\dot{x} + x = B\cos(2\pi t/T). \tag{2}$$

Понятно, что изменение времени с точки зрения фазового пространства скажется лишь на направлениях «стрелочек» на фазовых портретах. Таким образом, относительно системы (2) можно сказать следующее. В автономном случае при $\lambda>0$ в фазовом пространстве имеется неустойчивый предельный цикл (рис. 1). При наличии внешнего воздействия в его окрестности в расширенном фазовом пространстве появляется неустойчивый тор, либо неустойчивые и седловые предельные циклы на поверхности этого тора [6]. Таким образом, гармоническое воздействие на систему типа Ван дер Поля с неустойчивым предельным циклом инициирует в его окрестности неустойчивые режимы. На первый взгляд, для режимов, лежащих в окрестности такого неустойчивого предельного цикла, форма внешнего сигнала не должна быть существенной с принципиальной точки зрения. Оказывается, однако, что это не так, и импульсный сигнал может инициировать устойчивый тор и устойчивые предельные циклы на его поверхности в окрестности неустойчивого цикла в том случае, однако, если в системе существенна фазовая нелинейность.

1. Модифицированное уравнение Ван дер Поля под действием периодической последовательностью δ-импульсов

Пусть теперь система (2) находиться под внешним периодическим воздействием в виде последовательности δ-функций. Тогда ее уравнение примет вид:

$$\ddot{x} + (\lambda - x^2)\dot{x} + x = B\sum \delta(t - nT). \tag{3}$$

Здесь по-прежнему B – амплитуда внешнего воздействия, а T – период следования импульсов. На рис. 2 показана построенная численно карта динамических режимов

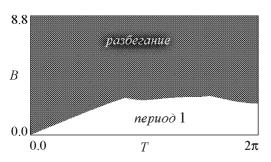


Рис. 2. Карта динамических режимов системы (3) на плоскости амплитуда B – период T внешнего воздействия для $\lambda=1.2$

системы (3) на плоскости амплитуда B – период T воздействия для значения управляющего параметра $\lambda=1.2$. Карта представляют собой плоскость параметров, на которой разными цветами обозначены области существования устойчивых режимов различных периодов. На этой и всех последующих картах используется палитра, состоящая из оттенков серого цвета: белый цвет отвечает режиму периода 2 и т.д.; черный цвет отвечает

квазипериодическим, хаотическим режимам, а также режимам, имеющим большой период. Кроме того, один из серых оттенков используется для обозначения области, в которой траектории системы в фазовом пространстве убегают на бесконечность. На карте, представленной на рис. 2, наблюдаются всего две обширные области – область, отвечающая устойчивому режиму периода 1, и область убегания траектории на бесконечность. Наличие этих двух областей легко объяснимо. При небольших значениях амплитуды воздействия B попавшая внутрь неустойчивого предельного цикла изображающая точка за время автономной эволюции успевает прийти в устойчивый фокус, и внешняя сила не может «выбросить» ее за пределы неустойчивого цикла. Если же амплитуда B велика, то изображающая точка будет «выброшена» за пределы неустойчивого цикла и, как следствие, уйдет на бесконечность.

Модифицируем теперь исследуемую систему. Для этого добавим в автономное уравнение еще одну нелинейность, а именно, нелинейность кубического типа, характерную для осциллятора Дуффинга,

$$\ddot{x} + (\lambda - x^2)\dot{x} + x + \beta x^3 = 0. \tag{4}$$

где β – параметр нелинейности. Эта нелинейность сказывается, как известно [6], существенным образом на динамике фазы, которая в рамках укороченных уравнений теперь зависит от амплитуды. (Изображающие точки, имеющие одинаковые начальные координаты, в случаях $\beta=0$ и $\beta\neq0$ двигаются по-разному – во втором случае фаза меняется быстрее.)

Вновь введем в рассматриваемую систему внешнее периодическое импульсное воздействие

$$\ddot{x} + (\lambda - x^2)\dot{x} + x + \beta x^3 = B \sum \delta(t - nT). \tag{5}$$

Для исследования системы (5) построим карты динамических режимов на плоскости амплитуда B – период T воздействия при значении параметра фазовой нелинейности $\beta=1$. Карты для малых λ (например, $\lambda=0.3$) качественно не отличаются от приведенных на рис. 2. Но уже при $\lambda=1.2$ (рис. 3, a) видно, что на границе областей периода 1 и разбегания появляется узкая полоса устойчивых квазипериодических режимов и режимов захвата фазы (синхронизации). На увеличенном фрагменте на рис. 4, a очень хорошо просматривается классическая картина языков синхронизации устойчивых режимов, опирающихся своими остриями на границу

области режима периода 1 (исключение составляет область периода 2). При увеличении параметра λ эта картина сохраняется, а внутренняя структура языков синхронизации становится более ярко выраженной (рис. 3, δ и 4, δ). Так, внутри области режима периода 2 и внутри большинства языков синхронизации возникают области режимов удвоенного периода с последующим переходом к хаосу через удвоения периода. На рис. 4, δ хорошо видна область устойчивых режимов характерного вида («crossroad area», по терминологии [22]) на базе цикла периода 4.

Таким образом, имеет место эффект возникновения устойчивых квазипериодических и синхронных режимов, включая режимы удвоенного периода, в окрестности неустойчивого предельного цикла, инициированных периодической последовательностью δ -функций. Численные эксперименты говорят о том, что этот эффект реализуется (по крайней мере, становится заметным) лишь при достаточно больших значениях параметра фазовой нелинейности β и управляющего параметра λ .

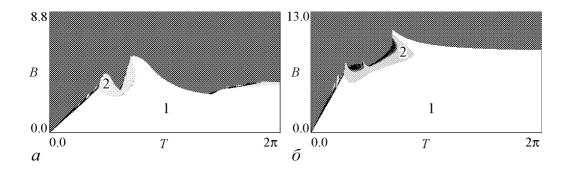


Рис. 3. Карты динамических режимов системы (5) на плоскости амплитуда B - период T внешнего воздействия для $\lambda=1.2$ (a), $\lambda=3.0$ (δ). Параметр нелинейности $\beta=1$

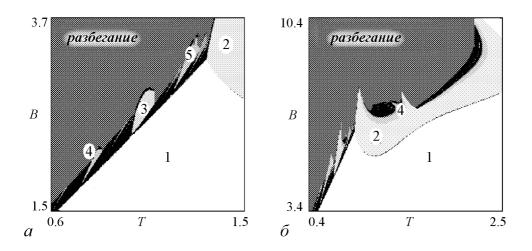


Рис. 4. Увеличенные фрагменты карт динамических режимов системы (5), представленных на рис. 3, a (a) и 3, δ (δ). На них хорошо видна узкая полоса устойчивых синхронных и квазипериодических режимов

Дадим еще несколько характерных иллюстраций. На рис. 5 представлен фрагмент карты динамических режимов системы (5) и соответствующие портреты аттракторов, построенные внутри основных языков синхронизации, а также аттрактор для квазипериодического режима. На рис. 6 показаны бассейны притяжения простейшего периодического и одного из квазипериодических аттракторов. Здесь L —

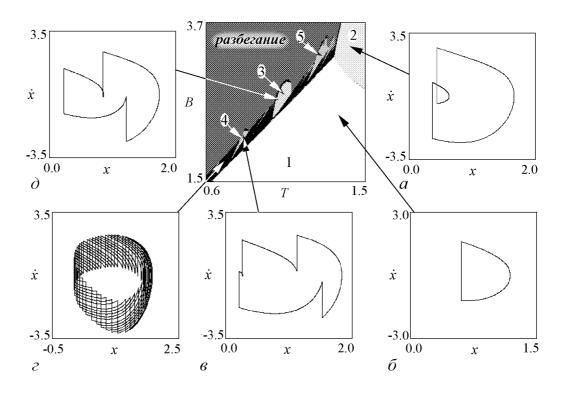


Рис. 5. Система языков синхронизации, возникающая в дифференциальном уравнении (5) при $\lambda=1.2$ и $\beta=1$ и портреты аттракторов, построенные для некоторых режимов

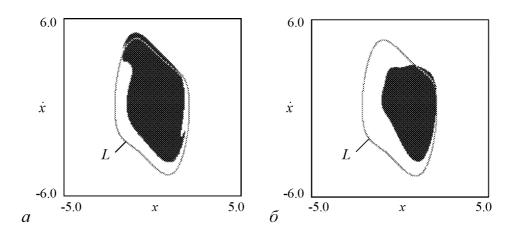


Рис. 6. Бассейны притяжения, построенные для аттракторов периодов 2 (a) и квазипериодического аттрактора (δ) неавтономной системы (5)

неустойчивый цикл автономной системы, черная область представляет собой бассейн притяжения для аттрактора неавтономной системы (5). Все бассейны построены для сечения Пуанкаре неавтономной системы. Хорошо видно, что возникшие в рассматриваемой системе устойчивые периодические режимы располагаются в окрестности неустойчивого предельного цикла автономной системы.

При достаточно больших значениях параметров λ и β на картах динамических режимов системы (5) на границе области режима периода 1 и области разбегания наблюдается еще одна область режимов, имеющих отличный от единицы период (правая часть рис. 3, $a, T \approx 4-5$). Эта область в увеличенном виде для $\beta = 2$ показана на рис. 7, который иллюстрирует ее эволюцию с ростом параметра λ. При небольших λ четко видна система языков синхронизации и структуры типа «crossroad area». С ростом управляющего параметра λ языки синхронизации «опускаются» под область режима периода 1 и исчезают (рис. 7, δ). В результате при $\lambda = 1.2$ на картах остаются лишь структуры типа «crossroad area». Это также устойчивые режимы, инициированные внешним импульсным сигналом в окрестности неустойчивого цикла, в чем убеждаемся, обратившись к рис. 8. Из сравнения рис. 5 и 8 видно, что в первом случае в промежутке между импульсами фазовая траектория совершает примерно пол-оборота вокруг устойчивого фокуса, а во втором – целый оборот. Естественно ожидать, что при больших значениях периода внешнего воздействия возникнут и другие системы языков синхронизации и структуры типа «crossroad area», отвечающие большему числу оборотов фазовой траектории вокруг устойчивого фокуса.

Итак, динамика системы протекает следующим образом. В промежутке между импульсами (стадия автономной эволюции) фазовая траектория уходит от неустойчивого цикла, однако затем внешний импульс возвращает ее в его окрестность. Затем траектория опять уходит от неустойчивого цикла, а следующий импульс ее опять возвращает в окрестность неустойчивого цикла и т.д. Этим же объясняется и тот факт, что возникшая в системе (5) структура языков синхронизации располагается на границе области режима периода 1 и области убегания траектории на бесконечность. Очевидно, что для возвращения фазовой траектории в окрестность неустойчивого цикла автономной системы необходимо, чтобы внешний импульс действовал

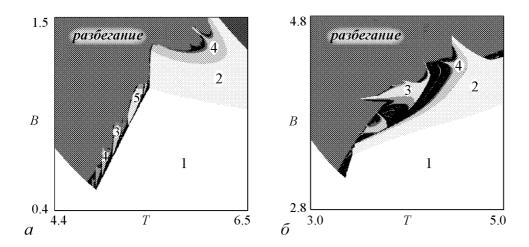


Рис. 7. Эволюция карт динамических режимов системы (5) для второй системы языков синхронизации. Карты построены при $\beta=2$ и следующих значениях параметров λ : a-0.3; $\delta-1.2$

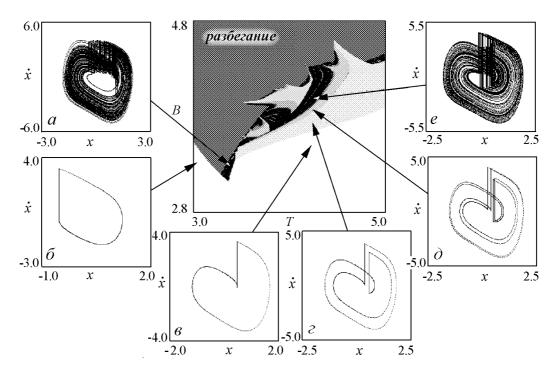


Рис. 8. Вторая область устойчивых режимов, возникающая в системе (5) при $\lambda=1.2$ и $\beta=2$ и портреты аттракторов, построенные для некоторых режимов

в строго определенный момент времени и имел определенную амплитуду. С одной стороны, она должна быть достаточно большой, чтобы «выбросить» фазовую траекторию как можно дальше от устойчивого фокуса, а с другой – не очень большой, чтобы траектория не ушла за пределы неустойчивого цикла. Существенную роль в стабилизации неустойчивости, как мы видели из численных экспериментов, играет фазовая нелинейность (см. ниже).

2. Роль кубической нелинейности в процессе стабилизации неустойчивого цикла периодической последовательностью δ-функций

Численные расчеты сигнализируют о том, что для того, чтобы в системе (5) была возможна стабилизация и возникли устойчивые периодические и квазипериодические режимы, необходимо присутствие кубической нелинейности и с достаточно большим параметром β . Причем чем больше β , тем при меньших значениях управляющего параметра λ возникают языки синхронизации, и тем более они «развиты». Чтобы «выявить» роль фазовой нелинейности, было проведено попарное сопоставление фазовых траекторий неавтономной системы (5), построенных в отсутствие фазовой нелинейности и при ее наличии. За траекториями наблюдали в течение времени, чуть большего периода внешнего воздействия T. Сравниваемые траектории стартовали из одной точки на фазовой плоскости. Результаты представлены на рис. 9, где изображены также неустойчивые циклы автономной системы в отсутствие фазовой нелинейности и для случая $\beta = 1$. Видно, что вторая траектория движется по орбите большего радиуса, и ее фаза изменяется более ускоренно. Как

итог – первую траекторию импульс выбрасывает за пределы неустойчивого цикла, а вторая успевает заметно приблизиться к устойчивому фокусу в центре рисунка, так что внешний импульс возвращает ее в окрестность предельного цикла.

Еще одна иллюстрация роли фазовой нелинейности представлена на рис. 10. 3десь показаны по паре фазовых траекторий, стартовавших из близких точек. Рис. 10, a относится к системе без фазовой нелинейности, а рис. 10, δ – с существенной нелинейностью. Точки старта помещены вблизи неустойчивого цикла, чтобы сделать наличие неустойчивости в системе более явным. Траектории на рис. 10, a, несмотря на импульсное внеш-

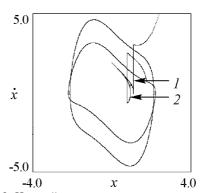
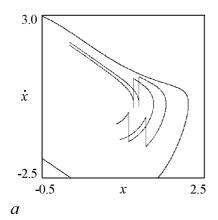


Рис. 9. Неустойчивые предельные циклы и две избранные фазовые траектории неавтономной системы (5), стартующие из одной точки, в случае отсутствия фазовой нелинейности $\beta=0$ (I) и при $\beta=1$ (2). Остальные параметры фиксированы и имеют значения: $\lambda=1.2,\,T=1.5$ и B=3.2

нее воздействие, очень быстро расходятся. А на рис. 10, δ видно, что изображающая точка, которая движется по орбите большего радиуса, опережает другую по фазе. В результате после действия двух импульсов расстояние между орбитами практически равно начальному. Фазовая нелинейность практически полностью компенсировала присущую системе неустойчивость.



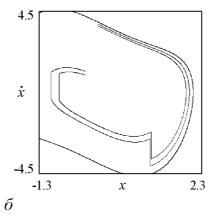


Рис. 10. Вид фазовых траекторий, стартовавших из двух близких точек, в случае, когда $\beta=0$ (a) и $\beta=1$ (δ). Остальные параметры $\lambda=1.2,\,T=1.5$ и B=1.8

Заключение

Таким образом, в работе рассмотрена динамика неавтономной системы типа Ван дер Поля – Дуффинга с неустойчивым предельным циклом. Показано, что внешнее воздействие в виде периодической последовательности δ-функций вызывает в неавтономной системе эффект стабилизации неустойчивости и приводит к возникновению устойчивых квазипериодических режимов со встроенной системой языков синхронизации Арнольда, а также областей удвоенного периода и характерных структур «crossroad area», которые локализованы у границы области разбегания траекторий. Аттракторы разных типов устойчивых режимов существуют в окрестно-

сти неустойчивого цикла автономной системы. Этот эффект возможен (по крайней мере, становится заметным при компьютерном моделировании) при наличии достаточно сильной кубической нелинейности в исходной дифференциальной системе.

Работа поддержана Российским фондом фундаментальных исследований грант №03-02-16074 и грантом №Y2-P-06-13 в рамках программы «Фундаментальные исследования и высшее образование».

Библиографический список

- 1. *Неймарк Ю.И.*, *Ланда П.С.* Стохастические и хаотические колебания. М.: Наука, 1987.
- 2. Берже П., Помо И., Видаль К. Порядок в хаосе. М.: Мир, 1991.
- 3. Ott E. Chaos in dynamical systems. Cambridge university press, 1993.
- 4. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990.
- 5. Winfree A.T. The Geometry of Biological Time. Berlin: Springer, 1980.
- 6. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003.
- 7. *Caldas I.L., Tasson H.* Limit cycles of periodically forced oscillations // Phys. Lett. 1989. Vol. A135. P. 264.
- 8. *Steeb W.H.*, *Kunick A*. Chaos in limit-cycle systems with external periodic excitation // Int. J. of Nonlinear Mechanics. 1987. №22. P. 349.
- 9. Gonzalez D.L. and Piro O. Chaos in a nonlinear driven oscillator with exact solution // Phys. Rev. Lett. 1983. Vol. 50, №12. P. 870.
- 10. *Ding E.J.* Analytic treatment of periodic orbit systematics for a nonlinear driven oscillator // Phys. Rev. 1986. Vol.A34, №4. P. 3547.
- 11. *Ding E.J.* Analytic treatment of a driven oscillator with a limit cycle // Phys. Rev. 1987. Vol. A35, №6. P. 2669.
- 12. *Ding E.J.* Structure of parameter space for a prototype nonlinear oscillator // Phys. Rev. 1987. Vol. A36, №3. P. 1488.
- 13. *Ding E.J.* Structure of the parameter space for the van der Pol oscillator // Physica Scripta. 1988. Vol. 38. P. 9.
- 14. *Ullmann K. and Caldas I.L.* Transitions in the parameter space of a periodically forced dissipative system // Chaos, Solitons & Fractals. 1996. №11. P. 1913.
- 15. *Keener J.P.*, *Glass L*. Global bifurcation of a periodically forced nonlinear oscillator // J. Math. Biology. 1984. №21. P. 175.
- 16. Glass L., Sun J. Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations // Phys. Rev. 1994. Vol. 50, №6. P. 5077.
- 17. *Ding E.J. and Hemmer P.C.* Exact treatment of mode locking for a piecewise linear map // Journal of Statistical Physics. 1987. Vol.46, №1-2. P. 99.
- 18. *Кузнецов А. П., Тюрюкина Л. В.* Осциллятор Ван дер Поля с импульсным воздействием: от потока к отображениям // Изв. вузов. Прикладная нелинейная динамика. 2001. Т.9, №6. С. 69.
- 19. *Glass L., et al.* Global bifurcations of a periodically forced biological oscillator // Phys. Rev. A. 1983. №29. P. 1348.

- 20. *Кузнецов А. П., Тюрюкина Л. В.* Синхронизация автоколебательной системы Ван дер Поля Дуффинга короткими импульсами // Изв. вузов. Прикладная нелинейная динамика. 2004. Т.12, №5. С. 16.
- 21. *Кузнецов А.П., Кузнецов С.П., Рыскин Н.М.* Нелинейные колебания. М.: Физматлит, 2002. 292 с.
- 22. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.

Саратовский филиал ИРЭ РАН Саратовский государственный университет Поступила в редакцию После доработки

24.03.2005 14.10.2005

STABLE QUASI-PERIODIC AND PERIODIC REGIMES INITIATED BY THE SHORT PULSES IN SYSTEM WITH UNSTABLE LIMIT CYCLE

A.P. Kuznetsov, L.V. Turukina

The dynamics of a system with unstable limit cycle under the periodic sequence of delta-pulses is considered. It is shown, that stable quasi-periodic regimes and phase lock regimes (synchronization) are observed within a narrow range of parameters of the external action in the system with cubic nonlinearity. Influence of main system's parameters to the stable quasi-periodic regimes and phase lock regimes is investigated.

Кузнецов Александр Петрович — родился в 1957 году. Доктор физикоматематических наук, ведущий научный сотрудник Саратовского филиала Института радиотехники и электроники РАН, профессор Саратовского госуниверситета, заведующий базовой кафедрой динамических систем СГУ в СФ ИРЭ РАН. Специалист по нелинейной динамике, теории динамического хаоса и теории критических явлений. Занимается использованием идей теории катастроф и теории бифуркаций, а также развитием концепции сценариев перехода к хаосу применительно к многопараметрическим модельным и физическим нелинейным системам. Соросовский профессор (2000, 2001), научный руководитель студенческой лаборатории «Теоретическая нелинейная динамика» и заочной школы факультета нелинейных процессов. Опубликовал более 100 научных работ. Автор нескольких оригинальных учебных курсов для факультета нелинейных процессов и лицея прикладных наук СГУ, шести учебных пособий и монографии «Нелинейные колебания» (совместно с С.П. Кузнецовым и Н.М. Рыскиным. М.: Физматлит, 2002). Член редколлегии журнала «Империя математики».

E-mail: alkuz@sgu.ru; www.sgtnd.tserv.ru

Тюрюкина Людмила Владимировна – родилась в 1977 году. Кандидат физико-математических наук, старший научный сотрудник Саратовского филиала Института радиотехники и электроники РАН, ассистент базовой кафедры динамических систем СГУ в СФ ИРЭ РАН. Область научных интересов – динамический хаос, критические явления на пороге хаоса, сложная динамика нелинейных осцилляторов и автоколебательных систем с внешним периодическим воздействием в контексте сопоставления различных подходов к их описанию, синхронизация короткими импульсами и управление неустойчивыми режимами посредством коротких импульсов. Автор 26 научных публикаций, в том числе 7 статей в российских и зарубежных журналах. Лауреат стипендии Президента РФ для студентов и аспирантов. В 2001 и 2002 годах получила персональные гранты РФФИ для молодых исследователей. Принимает участие в работе международных научных коллективов.

E-mail:ludmila@forpost.ru