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Topic and aim. A brief review of publications and discussion of some mathematical mod-
els are presented, which, in the author’s opinion, are well-known only to a few specialists.
These models are not well studied, despite their universality and practical significance. Since
the results were published at different times and in different journals, it is useful to summarize
them in one article. The goal is to form a general idea of the subject for the readers and to
interest them with mathematical, physical or applied details described in the cited references.
Investigated models. Higher-order dissipative models are discussed. Precisely linearizable
equations containing nonanalytic nonlinearities — quadratically-cubic (QC) and modular (M) —
are considered. Equations like Burgers, KdV, KZ, Ostrovsky—Vakhnenko, inhomogeneous and
nonlinear integro-differential equations are analyzed. Results. The appearance of dissipative
oscillations near the shock front is explained. The formation in the QC-medium of compres-
sion and rarefaction shocks, which are stable only for certain parameters of the «jump», as well
as the formation of periodic trapezoidal sawtooth waves and self-similar N-pulse signals are
described. Collisions of single pulses in the M-medium are discussed, revealing new corpus-
cular properties (mutual absorption and annihilation). Collisions are similar to interactions of
clusters of chemically reacting substances, for example, fuel and oxidizer. The features of the
behavior of «modular» solitons are described. The phenomenon of nonlinear wave resonance
in media with QC-, Q- and M-nonlinearities is studied. Precisely linearizable inhomogeneous
equations with external sources are used. The shift of maximum of resonance curves relative
to the linear position, which is determined by the equality of velocities of freely propagating
and forced waves, is indicated. Simplified models for diffracting beams obtained by projecting
3D equations onto the beam axis are analyzed. Strongly nonlinear waves in systems with
holonomic constraints are discussed. Integro-differential equations with relaxation type kernel,
and the possibility of reducing them to differential and differential-difference equations are
considered. Discussion. The material is outlined on a popular level. Apparently, these studies
can be continued if the readers find them interesting enough.
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Introduction

Dmitry Ivanovich Trubetskov is well known not only as an outstanding scientist, but
also as a brilliant popularizer of science, on whose books several generations of specialists
grew. [ was lucky to be a scientific editor of the tutorial [1] written by D.I. Trubetskov
together with M.I. Rabinovich by the time when the «nonlinear» literature was in great
demand. In the following years I got a great pleasure of the books written by Dmitry
Ivanovich and his lectures at the Nonlinear Waves Schools, which were organized in
Nizhny Novgorod by A.V. Gaponov-Grekhov.

It’s a great responsibility — to write an article for the special issue of the journal,
devoted to D.I.Trubetskov. It’s hard to maintain the proper scientific and educational level
fit to the jubilee celebrator. Especially, it’s hard to do it in such limited time according to
the Journal requirements. On the other hand, it’s impossible to refuse to participate in the
jubilee, even if the material is rather raw. I hope that the readers and Dmitry Ivanovich
shall not judge the result of my efforts strictly.

The exactly solvable problems attracted my attention during many years. Perhaps,
it was because I didn’t have the skill of informational technologies. 1 was «dissuaded» to
practice computer calculations by academicians R.V. Khokhlov (my scientific supervisor)
and N.S. Bakhvalov (the famous expert in numerical methods). In 1974 they organized
the group of physicists and mathematicians [2] focused of computer solution of nonlinear
wave problems. After many years of collaboration with N.S. Bakhvalov and his colleagues
I understood that the development and application of numerical methods is the special
occupation requiring special skills. It’s better for everyone to go about his own business,
and my business is analytical theory oriented upon experiment and applications.

1. Burgers-type equations with higher derivatives

In this section we shall speak about evolutional equations of the following type

n

VOV 0

0z 00 oon
here I' is the dissipation parameter. In most of the wave problems the dimensionless
variables z, 0 have the sense of «slow» coordinate along the direction of wave propagation
and of the «delayed» time in the reference system which moves with the speed of the
natural wave in the medium. For n = 1 (1) transforms into Hopf-type equation, for
n = 2 — Burgers equation, for n = 3 — Korteweg—de Vries equation. All three belong to
the most well-known equations, and it’s clear, why. Besides their interesting mathematical
properties, they provide correct modeling of the processes of different physical nature.
The second-order equation (Burgers equation, invented by Bateman) is generally unique:
it admits exact linearization with the help of simple conversion of variable (Cole-Hopf
transformation, devised by Florin).

There is a question: what is happening when n > 3?7 Are these equations practi-
cally useful or they must be considered just formally continuing the series n = 1,2,3,...7
As an example of interesting but complex model, we can name the one-dimensional
Kuramoto-Sivashinsky equation with second-order, third-order and fourth-order deriva-
tives. Nevertheless, the equation (1), which contains fourth-order derivative only, didn’t
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attract any attention. But it is surely interesting for practical application. The following
equation [3]

ov oV oV
2 Yy = 1= 2
0z 00 004 @
corresponds to dispersion relation
k=2 + iyt
c

i.e. describes nonlinear waves in dissipative medium, where dissipation is proportional
to the fourth degree of frequency with some coefficient x. The dissipation of acoustic
waves proportional to yw* is observed in media with low-dimensional heterogeneities
(rocks [4], skull bones [5]). For example, in liquids containing gaz bubbles with radius
a, volume concentration n and natural frequency ., the coefficients y = 4mna®/w?.
The same dissipations take place because of Rayleigh scattering in the media with low-
scale fluctuations of refractive index p. The coefficient x = 8 (u?) a®/c*, where a is the
correlation radius.
It’s not difficult to find the partial solution (2) as a stationary wave [3]

0N\NS T @
- (57) [ ¥
0

The exact solution (3) in quadratures describes the shock wave of compression
(see Fig. 1) with finite width of front, defined by competition between nonlinearity and
dissipation, proportional to fw*. The curves /-5 correspond to the values of dissipation
parameter I equal to: 2.2-107%,6.1-1073, 2.8-1072, 7.7- 1072, 2.2- 107!, respectively.
The front expands with the increasing of dissipation.

The value V = 1 is achieved in finite time 6 = 0, ~ 3.4 - T3, In the point
0 = 0, the first and second derivative are zero. Nevertheless, the third derivative is
positive and the increasing of V' over the inflection point 6 > 0, continues. Thus, the
stationary wave (3) forms for the perturbation, which indefinitely grows at infinity. This
is the difference between this equations and Burgers equation, for which the stationary
wave V = tanh (6/2I') — 1 for 6 — oco. The cause of this difference is that the more
strong dependence of dissipation on frequency (w?* instead of w?) can be compensated by
increased inflow of energy to the wave front, which is supplied by growing of V' when
0 — oo. But there also is the limited sta-
tionary solution. The numerical solution
of (2) shows that the asymptotic increas-
ing of V' — 1 when 6 — oo is not mono-
tone but is accompanied by fading oscilla-
tions [3].

Later the properties of symmetry of
the model (2) were investigated by the
methods of Lie group theory [6]. In [7]
the equation (2) and the equation (1) of
the sixth order have been studied in detail.
Computer analysis confirmed the fact of Fig. 1. Shape of the shock front, described by the
appearance of the fading oscillations near ~ °Mtion 3) 3]
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the shock front. The oscillations intensify

4 9 z=0 with the increasing of the order of equa-

L0 tion. Such oscillations appear at propa-

0.5 gation of arbitrary form signal, in conse-

e quence of appearance of an abrupt shock
0 \ RL front as the result of signal evolution.

0.5 In Fig. 2 [7] one can see the oscillat-

5 10 ing front for the initial harmonic signal
-1.0 in model (1) with n = 6. The different

Fig. 2. One period of a harmonic (at z = 0) signal and PrOfi1es correspond to different values of 2

dissipative smoothing of an oscillating shock front [7] and ' =2.45-107°.
It is known that front oscillations

can appear in other cases, for example, in Korteweg—de Vries—Burgers model [8]. But
the mechanisms in these cases are different. In dispersive medium oscillations appear
because of the «scattering» (disphasing) of harmonies, which form the front. In our case
oscillations are the consequence of «Fourier phenomenon». The dissipation proportional
to w?" removes the high harmonics from signal spectrum, consequently the forming of
«monotonous» front is impossible. The sequence w>” with n — oo converges non-
uniformly: in the diapason 0 < w < 1 - to zero, for w > 1 — to infinity. Thus, only the
low harmonics, belonging to the area 0 < w < 1, «survive» in the wave: they form the
oscillating signal.

2. Exactly linearized equations with modular, quadratic
and quadratic-cubic nonlinearities

Nonlinear equations in partial derivatives of the second order, allowing linearization,
are interesting not only for mathematical physics, but also for understanding of nonlinear
phenomena. The equations adequate to real systems are the most useful. Let us consider
the following equation:

0%V

ov. 09 B.o ¥

Coefficients a, 3, v correspond to the terms with the nonlinearities, which we shall call
modular (M), quadratic (Q) and quadratically-cubic (QC) nonlinearities. It’s easy to see
that the replacement

2 0
V=—c-——InU 5
Bryo0 ®)
brings (4) to linear equation for auxiliary function U:
ou ou 0*U
— =do—+T—. 6
9:  “96 " 02 ©

In the expressions (5) and (6) the upper signs are used for V' > 0, and the lower
ones for V' < 0. Linearization allows to find many solutions describing real phenomena.

In the case we have only the Q-nonlinearity o = y = 0, f # 0), we obtain the
common Burgers equation from (4).

Not long ago the study of quadratically-cubic equation (equation (4), in which
a=p=0, v # 0 [9-13]) (4) began. It also can be linearized and has important physical
sense.
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The QC-equation describes: shock ¥ ——

waves of compression and rarefaction, 08 VL

which are stable only for certain val- 0.41

ues of jump parameter (see Fig. 3);

transformation of harmonic wave into Or

a «sawy» with trapezoidal prongs (see 04k

Fig 4); effects of self-action, nonlinear

attenuation, etc. 0.8} 765/4/3/2] 1

In Fig. 5 [13] one can see the -60.0-40.0 200 0 20.0 400 600 ©
self-similar SOlutlon_ of QC-equation (4) Fig. 3. The process of forming stable compression shock
as N-wave. According to one of the sym- fronts (right-hand curves /-7) and rarefaction shock fronts
metries of equation (4) it can be (left curves /-7). Number I' = 0.03. Curves /-7 corre-
brought to an ordinary differential spond to distances z = 0, 10, 20, 30, 40, 50, 60 [11]
equation by the following substitution

2r 0
fEale ) o

Positive and negative branches of the
solution joint in the point z,.. We
can mark that this solution generalizes
the self-similar solution of Q-equation
[14, 15] and transforms into the latter
in the case of unipolar impulse. Let

us point at some applications of QC- Fig. 4. The process of forming a periodic trapezoidal
model. sawtooth wave in a QC-medium. Number I' = 0.01.

. Curves /-9 correspond to distances z = 0, 1, 4, 8, 12,
Example 1. 1t is known that for 16, 24, 32, 40 [12]

high-level sounds a hole in a plate ex-
hibits nonlinear response. It is shown

experimentally [16] that the relation be- ‘EZ 0
tween acoustic pressure and speed is ] 30
the following p’ = gu |u|. The similar 2 190

term appears in Cauchy-Lagrange inte-
gral in the case of oscillating dynamics
of medium.

Tables of coefficients ¢ for differ-
ent streamlined obstacles can be found
in the reference book [17]. Adding this
nonlinear term to the state equation of Fig. 5. A self-similar solution of the QC-equation (4)
fluid equations system, we can easily in.the form of an_IgI-wailg. Curves /-7 correspond to

. . . points:(—z,) = 107°,1077,0.25,1,2,4,6 [13]
derive the QC-equation (4) using stan-
dard procedures. Metamaterial with nonlinearity p’ = gu|u| can be made by placing
streamlined elements into a fluid. The effect of this type of nonlinearity appears in the neck
of Helmholtz resonators with fiberfill, which are used for loud sounds absorption [18].

Example 2. As the media parameters are usually defined from the data of accurate
spectrum measurements, let us discuss harmonic series expansion of the solution of QC-
equation (4) for monochromatic initial signal. First of all the lowest (third) harmonic is
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generated. At small distances it is propor-
tional to amplitude square p’ 3 of the wave
of fundamental frequency, and increases
in proportion to z!. At the other hand,
in common Q-medium these relations are
usually the follows: p’g and z2, but of-
ten there are some deviations. For ex-
ample, in aluminum alloy polycrystalline
the deviation from p'S, 22 is conduced by
nonlinear friction on intercrystallite bound-
Fig. 6. The collision of three single signals with zero aries [19]. The behaviour of QC-model is

total momentum. Curves /-5 represent successive mo- o1 qascribed for shear waves (for exam-
ments of processes of mutual absorption and annihila-

tion of signals. Number T' = 0.003 [24] ple in soft biological tissues), in which the

symmetry doesn’t allow quadratic effects.
In any case the dependence of the third harmonic from the distance (proportional to 2™
for 1 < m < 2) and the amplitude (proportional to p’ ’g for 2 < k < 3) evidence that there
are QC-elements in the medium volume. Other applications and experiment are described
in the review [10].

The study of the waves in the media with «module» nonlinearity (B = y = 0,
o # 0) have been also began not long ago [20-22]. M-media, which can be found
in mechanics, have different elasticities for tensile and compression deformations. For
example —reinforced polymers and concretes [23, Ch. 1, p. 10]. In this case the M-
equation is even simpler than the two linearized equations of Q- and QC-type, mentioned
above. This equation is linear for the function which keeps the sign, i.e. for V>0 or
V' < 0. Nonlinear effects appear only for alternating solutions.

An example is the process of collision of two [9] or three [24] pulses of different
polarity (see Fig. 6). At first (the curve /) one positive and two negative pulses are spaces
and begin to converge without interaction. As the result of collision of the positive and
the nearest negative pulses, the coupled state with common shock front forms (curve 2).
In that moment the nonlinear attenuation «switches on» (compare the curves 2 and 3), and
goes on up to negative pulse vanishing. The formed positive pulse delays in phase and
has smaller amplitude in comparison with the original one. Further it propagates without
changing its form and collides with the second negative pulse. The mutual absorption and
annihilation of the pulses takes place (compare the curves 4 u 5).

Thus, the interaction of solitary waves in M-media demonstrates properties, which
differ from the ones observed for elastic collisions of solitons and non-elastic shock waves.
There is an analogy with interaction of clots of chemically reacting substances, for exam-
ple, fuel and oxidizer. As result of such reaction one (smaller) component vanishes and
the mass of the other (larger) decreases.

Solutions of Korteweg—de Vries [25] M-equation demonstrate interesting properties.

oV 0 o3V
52 a0 V1= Poes (®)

A modular soliton can’t propagate in undisturbed media, i.e., can’t have a profile shown in

Fig. 7, for which V (8) — 0, |6] — oo. The cause of it is the fact that solitons form when
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there is a competition between nonlinear
«steepening» and dispersive «widening»
of the wave, and in M-model there is
no nonlinearity for perturbation with con-
stant sign. It’s the main difference from
the common solitary solutions of KdV Q-
nonlinear equation; it is connected with
disappearance of one of the symmetries of
M-equation (8).

Effects of module nonlinearity were
observed in the experiments [26, 27]. It Fig. 7. The process of t‘ransformation of a periodic
. wave (curve /) into a soliton (curve 4), which occurs
is found that the dependence of the sec- it increasing wave amplitude [25]
ond harmonic amplitude from the first har-
monic amplitude, in the solids with inhomogeneous structure, differs from the quadratic
law Ay = K A%. It has the following form: Ay = K AT", where exponent index belongs
to diapason 1 < m < 2. It has sense to assume that besides the classic Q-nonlinearity the
medium has the second type nonlinearity, which is responsible for deviation from m = 2.
This could be the «molular» nonlinearity.

In the presence of Q- and M-nonlinearities simultaneously, the solution of the equa-

do 1 0 o?

by perturbation method for mechanical tension o, has the following form

tion

0= —A;sin(wr) — %ay <;_ch1 + 2062pA%> sin (2wt) . (10)
We can see that the modular nonlinearity gives linear dependence between the second
harmonic amplitude and the first harmonic amplitude (A5 ~ A;p), while the quadratic
nonlinearity gives another law (Ay ~ A%). In common case when the both nonlinearities
are essential, the exponent index in Ay = K AT lies in the diapason 1 < m < 2. Making
several measurements, we can solve the inverse problem [28] and restore the moduli g, 0.
It’s not hard to make concentrated M-nonlinear elements artificially [29], and then include
them into metamaterial matrix.

3. Inhomogeneous equations and wave resonance

Here we discuss the following equation

0*V

ov. 0
B aheli
062

—<a|V|+SV2+;VV|> = F(0+0z). (11)

0z 06

The presence of «external sourcesy i.e. function F'(0), in the right-hand-side of (11)
means that this equation can discribe not only the waves freely propagating in dissipative
medium with triple nonlinearity, but also «forced» waves, including the process of their
excitation. As the homogeneous equation (£ (6) = 0), the equation (11) can be linearised.
The model (11) is convenient to use for simplified description of nonlinear wave resonance
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in the systems of different physical nature. For the first time this equation (with a=y=0)
has been suggested as a model of generation of intensive hypersound by laser and a
process of stimulated Mandelstam—Brillouin scattering taking the acoustic nonlinearity into
account [30]. Further (11) has been applied to describe: excitation of underwater signals
by thermic optoacoustic method; excitation of sea surface waves by traveling pressure
wave; aerodynamical perturbations with transonic flow around of laser ray or solid profile
and many other applied problems (the bibliography can be found in [31]). Later there
appeared some mathematical studies devoted to the properties of inhomogeneous Burgers
equation and approximate methods of its analysis (see for example [32-34]).

Let’s remind that nonlinear wave resonance takes place when the «external force»
velocity c (the exciting source is meant) is equal to the velocity of the natural wave cy.
The condition ¢ — ¢y is similar to the condition w — wq, corresponding to realization of
simple vibration resonance.

If we neglect the dissipative and nonlinear terms, the solution (11) has the following
form:

V= é [F((”éz) —F(e)} Vo =2F(0), (12)

where F' is the primitive of F. Solution (12) satisfies the condition V (z = 0,0) = 0, i.e.
the increasing of the wave begins from zero level. When 8 — 0, ¢ — ¢, the uncertainty
appears in (12). It means that in the case of exact linear resonance the wave increases
unlimitedly proportional to the distance z, wherein the wave form repeats the function
F(0).

When there is the velocity detuning (& # 0), the energy of the source is brought
into the area of its localization (where F' # 0), and then «flows» to the right or to the
left, because the excited wave travels faster or slower than the sources. The result is the
stationary form of the wave. For example, for the source like «Lorentz bell» we obtain:

A - A
F = — arctan (be) R |VmaX (6)|z—>oo =

F0) =102 b

(13)

Dissipation usually eliminates the peculiarity of resonance curve |Viax (0)] (13) with zero
detuning 6 — 0, as in common oscillating system. For example, for harmonic excitation
F = Asin (0) we have:

A

woy/T202 + 82

Resonance curve (14) has the finite maximum with 8 — 0, which is equal to |Vijax| =
= A/(Tw3). It’s obvious that with & = 0 and weak dissipation (I' — 0) the wave may
grow to the level demanding nonlinear limiting.

‘ Vmax | - (14)

The stationary resonance profiles (z — o0) for zero detuning (8 = 0) can be
calculated analytically. For M-nonlinearity (¢ = 1, § = v = 0) and for the source
F = Asin (0) within one period — < 0 < 7t we have

A sgnb 1 —exp(—16]/I) .
= _ 2 0+T 0] —1]. 1
Vv 2 1+12) |2 T = exp (mor/) +cos0 4T |sin 0] (15)
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For Q-nonlinearity (B = 1, a = y = 0) and the same conditions the solution is expressed

through Mathieu function

do

2'T2

VzQFilnceo (6 A>, -t <0<m

For QC-nonlinearity the result is
more complex, because the odd QC-
nonlinearity leads to the self-action effects
and additional shift of resonance condi-
tion [35].

In Fig. 8 we can see the profiles of
one period of solution (15) and (16) for M-
and Q-media, and also for QC-media for
I' — 0. In the first two cases (even non-
linearity) compression shock front appears.
In the third case (odd nonlinearity) in each
period there is a compression shock wave
and a rarefaction shock wave. A sawtooth
wave with trapezoid «teeth» forms. It’s in-
teresting that the ratio of larger and smaller
«jumps» of different sign, which appear
on the breaks over the level V' = 0 is
equal to (v/2 — 1); the same takes place
also in the wave propagating freely in QC-
medium [10].

The process of establishing the sta-
tionary wave profile is conditioned by the
flow of energy from the source, nonlinear-
dissipative absorption and redistribution of
energy over the spectrum and the time
(within the wave period). The cooperative
influence of these factors can be studied
only by numerical modelling.

In Fig. 9 the process of generation of
the periodic profile in dissipative medium
with M-nonlinearity is shown. For small
z the profile follows the sinusoid, and for
z = 10 it is close to the stationary form
(see Fig. 8).

For the curves in Fig. 9 the de-
tuning O is equal to zero. The same
curves for Q-media, calculated with ac-
count for detuning, are shown in Fig. 10.
The result of the detuning is that the new
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Fig. 8. The steady-state profiles of a one wave pe-
riod in media with M-, Q- and QC-nonlinearities for

excitation by harmonic sources

e z=10
I 2
1.0+
8 1N0.2
oL=n i 2n
| 0 T 3n O
-1.0r
-2.0L

Fig. 9. Profiles of a periodic wave excited by sinu-
soidal running sources in an M-nonlinear dissipative
medium at values of numbersI' =0.1, A=1,6=0

y =10 3 2

1
1.0F 0.2

oZ_L]
—1.0§j ’

R

2% \391:9

Fig. 10. Profiles excited in a Q-nonlinear medium with
the same values of the parameters as in Fig. 9. Here,
the speed detuning is taken into account, 8 = 0.1
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portions of energy begin to enter into the

Fvand travelling wave in anti-phase and damp it.
20k 10 Thus the beat oscillations (the dependance
6=0.1 of wave profile maximum from the dis-
L5 tance) appear, which are shown in Fig. 11.
1.0 < The wave profiles for QC-medium
3.0 and zero detuning (& = 0) are shown in
0.5F £6.0 Fig. 12. The other parameters are the
0 E— - . - same as in Fig 9 and 10. The shift of the

0 1.0 20 30 =z

curves along the axis 0 to the left means
Fig. 11. Dependences on the distance of the maximum  that the wave in the medium moves faster
«amplitude» of the wave in the Q-medium at I’ = 0.1, .. ..

A = 1. As the detuning increases, the spatial fre- than co. This is ﬂ_le result of Se%f'acnon m
quency of the beats increases, and their «swing» de- the odd QC-nonlinearity. It this case the
creascs space beatings appear even for & = 0 (see

Fig. 11).

If Fig. 13 we demonstrate the resonance curves for absolute maximum of wave
amplitude and of the intensity, averaged over the period. These curves are calculated for
QC-medium, but similar curves are obtained for Q- and M-nonlinearities. The maximum
shift ¢ — ¢ is common for these three cases. This phenomenon is well known in
aerodynamics. During transonic flight the plane goes through maximal radiation resistance
with small excess of sound speed. This effect is described by Khokhlov-Zabolotskaya
(KZ) model or Lin—Reissner—Tsien model [2, 36].

The model of inhomogeneous equation (11) is widely used for strongly deformed
wave profiles, excited in acoustic resonators. Herewith many types of resonance curves
can be calculated analytically (see the Review [37] and [38, Ch. 11]). Such resonators can
be found in aeroacoustic applications and are used for nondestructive testing of solids [39].
The equation (11) is also used to describe the Burgers turbulence (Burgulence), because
it takes into account the third principle factor, the flow of energy to low frequency spec-
trum [40], besides high-frequency dissipation and nonlinear flow of energy over the spec-
trum.

|I/ab5|max ,
" 6.0 LA
1.0 40} .
0 I .
2.0t ;
-1.0 s LN
O "":"_-T 1 i 1 |‘ Civas
2.0+ 240 20 0 20 B

Fig. 12. Profiles excited in a QC-nonlinear Fig. 13. Nonlinear resonance curves — the dependence

medium at ' = 0.1, A = 1. Here the veloc- on the detuning 6 of the absolute maximum of the «am-

ity detuning 6 = 0 plitude» in the QC-medium (solid line). The dashed
line is a resonance curve for averaged intensity
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4. Simplified equations for wave beams

The Khokhlov-Zabolotskaya model mentioned above has stimulated the progress
in understanding physics of nonlinear diffracting beams in Q-media. This model has the

following form:
O (Op e Op\ ¢ (d*  10p
Eh((h'_é”p)p&c)_2<872+rf97' ' 1n

Here p is the acoustic pressure; z is the axial coordinate; r is the radial polar coordinate;
T =1 — x/c is the time in the reference system accompanying the wave; ¢ is the medium
nonlinear parameter; p is the density. The history of obtaining (17) and the following
results is set forth in the view [2].

There are no physically interesting solutions of Khokhlov—Zabolotskaya equations,
but the large amount of information is obtained by numerical integration [42]. These data
help to develop a series of approximate analytical methods.

The most interesting nonlinear problems concern obtaining maximally strong fields
in focus. For «sharp» focusing we can consider the wave before focus as spherically
converging, and the wave in focal area — as plane one [43]. In this case the waist area has
the form close to cylindrical. For the beams with round cross section the length of this
cylinder is equal to /., and cross section radius — a,

2
l*=ﬁ<<R, a*=@<<a. (18)
La La
In this expression Iy = wa?/(2c) is the diffraction distance, R is the focal distance, a is the
initial beam radius. Here and further we mean that the focusing is strong and diffraction is
weak. Just in this case when [; > R, we can form the most intensive fields in the focus.

Based on these assumptions, the authors of the work [44] suggested a model de-

scribing the wave within the waist

0 (8}? 5 8p> 2¢

ot \ Oz c3pp81 - b (19)

= _a? .
The equation (19) may be obtained from the equation (17) if we formally assume that the
acoustic field close to the axis (r = 0) has parabolic dependence on r

7"2

p(x,t,r) = <1 - a?> p(z,T). (20)
Substituting (20) into (17) and confining by paraxial area (r — 0), we come to the
model (19), which radically simplifies the analysis. It’s obvious that the one-dimensional
equation (19) is much simpler than two-dimensional (17) one for analytical study as well
as for numerical analysis.

For brevity the equation (19) is further used in dimensionless form

0 (oV ov 9
= v ) = 42V 21
20 (82 v ae) vV @D
We should indicate that the equation (21) is just a common model in wave theory. It is
called Ostrovsky—Vakhnenko equation [45]. It has been obtained also for oceanology
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problems (internal waves in rotating ocean [46]) and mathematical physics (soliton-like
solutions [47]). The generality of equation (21) is obvious: it is connected with universal
law of low-dimensional dispersion & = w/c — x/o and corresponds, for example, to
evolutional version of Klein—-Gordon equation.

The stationary solution of the equation (21) V' =V (6 + B2)

SN ENIERCTR) v E70-0) o)

is expressed through elliptical functions. It is shown in Fig. 14, marked as

V=pU, T =06yy2/3.

As it follows from (22), the maximal and minimal values of acoustic pressure are given
by the formula [44]
n? 2 cp 2
Punax = 2|painl = 5= () - (23)
The limiting of intensity is achieved in stationary wave field, which has not only
the special profile form but certain amplitude (23), which doesn’t depend from initial am-
plitude and frequency. This «saturation phenomenon» was for the first time studied in
the work [48]. For strongly focused wave in the water with focus angle 60° estimation
(23) gives pmax ~ 100 MPa and intensity I =~ 50 kW/cm?. The limit of focal intensity
96 kW/cm? is found by numerical modelling and 33 kW/cm? is measured experimen-
tally [49]. The intensities close to the limit are already achieved in medical devices [50].
Let us mark that in focal area we often observe asymmetric profiles (see Fig. 14),
but with shocks. But these waves are not stationary and change their form because of
energy losses in shock fronts. Just stationary waves bring the energy from source to focus
with minimal losses.
The nonstationary waves near the focus are investigated with modified model (19)

0 (Op dlnf e Op 2¢ 9 T2 )2
g(® S 2 . —(1-2 S
ot (83} T P c3pp 8r> a?f? (ac)p’ / ( R> * la @4)

The calculated results of distortion of the

AU wave passing through the focal area, are
o 7002 shown in Fig. 15 [51]. The ratio be-
tween focal length and diffraction length
05 R/14=0.2 and between focal length and
r fracture length R/ls, = 0.4. The curves
C=0.95-) 0 10.0 in Fig. 15, calculated from the model (24),
agree with the results of direct calculation
§? v v based on model [42].
-05 Let us mark that the equation (21)

Fig. 14. Forms of stationary waves near the focus for with variable coefficients of type (24) has

different values C' = 0.95,0.75,0.5,0.25,0.1,0.02. b : : -
! NG ) een investigated by physicists and math-
With increasing amplitude (C' — 0) the profile is dis- g y phy

torted and the positive peak becomes sharp [44] ematicians [52] for many years. Models
like (21) were not long ago generalized
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for M-, cubic and QC-nonlinearities in the VA
works [53] and [54].

Here we don’t discuss the models —
of nonlinear diffraction in the inhomoge- 4.0
neous media (see [55]). Such models are
even more «exoticy. They are very com- 0
plicated and almost always need numerical
analysis or essential simplification [56]. -4.0&

The exception includes the systems written 5
for nonlinear geometry acoustic approxi- Fig. 15. Profiles of one period of a harmonic
mation. These 3D models admit exact so- (for = 0) wave in a neighborhood of the fo-
lutions and in this sense are unique. as the S Curves /-7 are constructed for distances /R =
inique, : —0.8,0.9,0.95,1.0,1.05,1.1,1.2 [51]

«record» 3D Landau-Slyozkin solution of

submerged jet [57] (see the historical Review [58]). The latter problem can be also called
«exoticy. The result is well known but doesn’t stimulate research streams, because it’s
impossible to add anything.

5. Strongly nonlinear systems with holonomic constraints

It’s useful to distinguish strongly nonlinear waves and weak waves with strongly
pronounced nonlinearity [59]. Generally we have weak waves, and the defining equations
which describe them, can be expanded in power series or functional series. An example
is, adiabat «acoustic expansion» in density and pressure powers in the neighborhood of
equilibrium state. The terms of these series correlate with quadratic, cubic nonlinearity and
the nonlinearities of high degree. In optics the polarisation vector is expanded in powers
of the ratio of the electric field to the atomic field. Nevertheless such expansions are not
convenient is practical use at least in three cases: firstly, when the defining equations have
singularities; secondly, when series diverge in strong fields; thirdly, when the expansion
doesn’t contain linear term, but the high nonlinearities dominate.

An example of the first type can be found in distributed systems with M- and QC-
nonlinearities. There are no limit transitions to linear problems even for very weak signals.
The systems with holonomic constraints,
discussed below, can be attributed to the
third type of strongly nonlinear systems.

As an example of such structure we
can consider a crystal cell model shown in
Fig. 16. It’s important to emphasise that
the movement is bounded: the lattice sites
can move only along the axis x. Such sys-
tems with constraints may be artificially
produced but also may have natural ori-
gin. For example, mica plates, which can
easier be shifted parallel to the planes than
orthogonally.

Fig. 16. Lattice of the same masses, connected with the
) ) «nearest neighborsy» by linearly deformed unstretched
Let us consider a lattice cell defined springs. The motion of the masses is limited by rods

by a pair of numbers (n,m). A particle parallel to the z-axis
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with mass M in this cell is coupled with four nearest neighbours by the same linearly
deformable springs with hardness coefficient y. Let us designate the displacement of the
mass from equilibrium along the axis x as &, ,,. The Lagrange function of the structure
(see Fig. 16) is obviously the following

2
L= Z {;Mﬁi,m - % |:\/CL2 + (Em,m - $én,m—l)2 - CL:| -

2
- [\/aQ + (Enm — Enmes1)? — a] -

(25)
2

_% (En,m - %n+1,m)2 - % (En,m - Enfl,m)Q} .

If the displacements of the masses are small in comparison with cell period, i.e.
(Enm — Enm—1)? < 242, then the Lagrange function is simplified

_ L eo Y B s Y B .
L= ; {2MEn,m ]2 (En,m En,m—l) ]a2 (En,m En,m—i—l) (26)
_% (En,m - En—&-l,m)g - % (En,m - En_Lm)Q}

The chain of equations of motion for (26) is the following:

oy
M dEQ’] = —2%2 [(Ei,j —Eijo1)’ + (B — Ez‘,j+1)3] +v(28i; — &iv1; —Eic1y) - 27)

It’s easy to see that the relations (25)-(27) contain strong nonlinearity. For example, if
the springs inside the vertical layers (see Fig. 16) don’t deform, and the neighbours move

identically but in antiphase (§; j—1 = &; j+1 = —&; ), then (27) changes into equations
that doesn’t contain linear term ~ §; ;,
Py 8
dtQ + a2M ’i,j - 0 (28)

Periodical solutions of the equation (28) are expressed through elliptic integrals.
With the increasing of amplitude the oscillation period of §; ; grows, and when the ampli-
tude decreases to zero the period tends to infinity and the oscillations vanish.
Discrete systems like (25)—(28) are discussed in papers [60, 61]. Besides, the work
[60] describes an experiment with torsional oscillations of coupled disks with bounded
movement. Nevertheless there are few works in this direction and it’s desirable to go on.
Let us go to the limit of the continuum so that instead of differential-difference
equations [27] we would have partial differential equation
32g 282g - C2 82g3 02a2 a4g - 8% 2 YCL2

— —cC =——=+ —, =—, c .

o2 or2 2 Oy? 12 ozt © Ay M
The dimensionless quantity ¢ has the sense of deformation along the axis v, and ¢? is the
velocity square of the wave propagating in x-direction.

The equation (29) takes into account the nonlinearity, dispersion and anizotropic
properties of the structure shown in Fig 16. If the deformation doesn’t depend on coordi-
nate x, for pure transverse waves we derive

82g _ 1 5 62g3

(29)
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We can see that (30) is a strongly nonlinear equation, because there is no limit transition
to linear problem with ¢ — 0. The equation (30) has been used by W. Heisenberg in
his version of nonlinear quantum field theory [62]. For strongly nonlinear waves the
model (30) has been analysed in [10, 60]. It has been shown that the equation (30) can be
matched by the evolutional first-order equation

s \/§ 19
=+ 5\@\%- (31

This equation contains QC-nonlinearity |g| ¢, discussed in the sections 2—4.

The anizothropic properties described by the equation (29), are evident in the pres-
ence for homogeneous statical deformation. Suggesting in (29) ¢ = ¢y + ¢’ and keeping
the term ¢’ linear for small perturbations, we derive:

9% 20 2 Gl 2 9%

. 1 2 284 /
ot2 or2 Oa 2

ozt

(32)

Searching for the solution of (32) as a plane running wave, we find the dispersion law:

2 £202 3
(;)—2 = k? (1 — 1; cos’ 6> cos? 0 + §ggk2 sin” 0. (33)
Here 0 is the angle between wave vector k and the axis . When 6 = 0 or 6 = 7 /2 we
have pure longitudinal or transverse wave with the velocities

q=c — swa, ci:fgo. (34)

For small static deformation ci < cﬁ ~ ¢?, i.e. the transverse wave is much «slower»
than the longitudinal wave. If there is no static deformation and ¢y = 0, the transverse
oscillations can not propagate at all, i.e. the wave process doesn’t appear. This situation
is typical for muscles, where the speed of shear waves has the order of m/sec, while
the longitudinal waves move with the speed near 1.5 km/sec (near the sound velocity in
water). Besides the velocities depend on the direction of wave propagation towards the
orientation of muscle fibers and muscle tension [63]. These properties are in the basis
of the work of modern medical elastographs used for diagnosis of state and pathology in
muscles and other soft tissues [64].

For arbitrary angles 6 # 0, 6 # 1t/2 the equations (29) and (32) describe the waves
which are nor pure longitudinal nor transversal. The equation (29) has also solitary and
other interesting solutions.

6. Nonlinear integro-differential equations

The equations like [65]

o |9V V
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have rather general sense. For degenerate kernel K (s), which may be Delta-function
or combination of its derivatives, the following equations could be obtained from [35]:
Khokhlov-Zabolotskaya (17), Kadomtsev—Petviashvili, Khokhlov—Zabolotskaya—Kuznetsov
and other beam equations; in the case of one-dimensional waves — equation of type (1).

Differential equations result from (35) for some other kernels, too [66]. The most
well-known are the equations with exponential kernel, which is predicted by relaxation
model of Mandelstam—Leontovitch [57]. In this case for plane waves (35) follows:

0 ov ov 0%V
<1 + e»pelae> |:8z - Vae:| — DW (36)

The equation like (36) has been derived in [67] and in integral form — in [68].

Different forms of kernels useful for application are discussed in [69]. In particular,
the dependence of wave attenuation coefficient on frequency is described by power law
with fractional exponent, which is typical for biological tissues and geophysical structures,
and it needs integro-differential description. The same is for media with complex internal
dynamics of relaxation type.

How can the kernel K (s) be found in any concrete case? The frequency laws of
dispersion and absorption (real and imaginary parts of wave number £’ (), k” (w)) are
measured or determined from the physical model of Mandelstam—Leontovitch type. Then
the inverse problem is solved and the kernel is reconstructed by standard methods, which
use the principle of causality and the Kramers—Kronig relations.

For example, the exponent index in frequency dependence of attenuation in bio-
logical tissues changes from 2.1 (skull bones) and 1.7 (testicle tissue) to 1.1 (skeleton)
and 0.6 (skin) [5]. Most of all in MHz diapason (medical ultrasound) k" ~ >,
0 < v < 1. For this law it’s not hard to show that K (s) ~ s'~!. The peculiarity
with s = 0 is mostly insufficient, because the equation contains «convolution» of singular
kernel with oscillation function describing the wave field.

Only few explicit solutions for equations (35) are known. Stationary solutions for
the Q- [67] and QC-type [70] media are found.

If we are interested not only in concrete medium but in common properties of
nonlinear waves, there is a convenient method reducing integro-differential equation to
differential-difference equation or even to simple mapping. This method [69, 70] is effec-
tive for kernels differing from zero in finite intervals. The simplest case accords to the
medium with constant «memory»: K (s) = 1,0 < s < 1; K (s) =0, s > 1. In other
words, before s = 1 the medium «remembers everything» and in this moment «forgets
everything». For such kernel the equation (36) looks like

oV oV 0
For the stationary wave (37) it transforms into difference relation

V(G—l):V(O)Jr%[l—VZ(e)}. (38)

The mapping (38) V (6) — V (6 — 1) describes the shock wave front, which width grows
with the increasing of D.
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The following fact may seem surprising to physicists. According to statistical data
from «Thomson Reuters», the most frequently cited mathematical works in 2013 were
the articles devoted to nonlinear differential equations with fractional derivatives. There
are equations including integral term, as (35), but with special form of kernel. Fractional
derivative is usually understood in the sense Riemann-Liouville

(D&u):ata: n—a@i a+1 —, n—1<a<n, neN. (39

t
0%u 1 am / (s,z)ds
0
Such kernels just are «exotic». More often we can see oscillating kernels (for example, in
optics) or relaxation-type kernels (in acoustic or mechanics of hereditary media).
Thus, the border between «exotic» and «popular» models is conditional, flexible
and depends on collective activity of a large group of scientists and active cross-citation.

Conclusion

Thus, in this brief overview we discussed several equations, not well known in
the «nonlinear society», some analytical solutions and physical results. Our knowledge
have been mostly formed under the influence of the classical works in the area of non-
linear physics and mathematics. Today it possibly have sense to refer to «exotic» and to
construct models with new physical content. The experience having been accumulated
during the past years, is certainly very important in their analysis. From mathematical
point of view it seems to be useful to develop the group methods of detecting symmetries
for models, which contain generalized functions and singularities. It would be interesting
to apply the inverse scattering problem method for conservative systems, for example,
with QC- and M-nonlinearities. For physics the primary interest seems to lie in study
of strongly nonlinear wave processes and also their nonlinear-corpuscular properties. We
look to readers’ interest and support for new works in this direction.

The work is supported by RFBR grant Ne 14-22-00042.
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