INVESTIGATION OF REGULAR AND CHAOTIC DYNAMICS OF ONE FINANCIAL SYSTEM
Cite this article as:
Zinchenko А. Y. INVESTIGATION OF REGULAR AND CHAOTIC DYNAMICS OF ONE FINANCIAL SYSTEM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 173-187. DOI: https://doi.org/10.18500/0869-6632-2013-21-2-173-187
Based on complex numerical investigation for the nonlinear financial system introduced by Chen a map of dynamic regimes has been built, depending on the bifurcation parameters. All the major scenarios of transition to deterministic chaos have been found. Theorems of the existence of the globally exponentially attractive set and positive invariant, of periodic solutions, of Poincare–Andronov–Hopf bifurcation existence and theorems in the field of control of attractors are proved.
1. Данилов В.Я., Зинченко А.Ю. Синергетические методы анализа // Киев: НТУУ «КПИ» ВПИ ВПК «Политехника», 2011. 340 с.
2. Ma J.H., Chen Y.S. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. I // Applied Mathematics and Mechanics. 2001.Vol. 22, No 11. P. 1240.
3. Марсден Дж., Мак-Кракен М. Бифуркация рождения цикла и ее приложения. М.: Мир, 1980. 368 с.
4. Магницкий Н.А., Сидоров С.В. Новые методы хаотической динамики. М.: УРСС, 2004. 320 с.
5. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.
6. Малинецкий Г.Г., Потапов А.Б. Нелинейная динамика и хаос. Основные понятия: Уч. пособие. Изд. 2-е. М.: КомКнига, 2009. 240с.
BibTeX
author = {А. Yu. Zinchenko },
title = {INVESTIGATION OF REGULAR AND CHAOTIC DYNAMICS OF ONE FINANCIAL SYSTEM},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/investigation-of-regular-and-chaotic-dynamics-of-one-financial-system},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-2-173-187},pages = {173--187},issn = {0869-6632},
keywords = {Deterministic chaos,strange attractor,bifurcation,Lyapunov characteristic exponent,Poincare section and map,chaotic synchronization.},
abstract = {Based on complex numerical investigation for the nonlinear financial system introduced by Chen a map of dynamic regimes has been built, depending on the bifurcation parameters. All the major scenarios of transition to deterministic chaos have been found. Theorems of the existence of the globally exponentially attractive set and positive invariant, of periodic solutions, of Poincare–Andronov–Hopf bifurcation existence and theorems in the field of control of attractors are proved. }}