MAGNETOSTATIC SURFACE WAVE PULSES SELF-ACTION EFFECTS UNDER PROPAGATION IN FERRITE-DIELECTRIC-METAL STRUCTURES
Cite this article as:
Galishnikov А. А., Dudko . ., Kozhevnikov А. V., Nikitov S. А., Filimonov Y. А. MAGNETOSTATIC SURFACE WAVE PULSES SELF-ACTION EFFECTS UNDER PROPAGATION IN FERRITE-DIELECTRIC-METAL STRUCTURES. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 3, pp. 3-33. DOI: https://doi.org/10.18500/0869-6632-2006-14-3-3-33
Magnetostatic surface wave (MSSW) bright solitons in a ferrite-dielectric-metal FDM) structure have been studied experimentally and numerically in the framework of he nonlinear Schr¨ odinger equation. The attention was focused on the influence of the parametric instability on the soliton formation and propagation. We also discussed the contribution of the non-solitary (dispersive wave) part of the MSSW pulse on the soliton propagation, to show that their mutual interference leads to the levelling off or to the appearance of some peaks in the MSSW pulse output vs the input amplitude. We have also shown that for MSSW pulses with rectangular shape, the linear pulse compression caused by an induced phase modulation of the input pulse must be taken into account.
It was found experimentally for MSSW with wavelength l ¼ h that the modulation nstability leads to soliton formation for rectangular input pulses with duration t less han the characteristic transient time t ¤ needed for the onset of the parametric instability, while pulses with t > t¤ are mainly subjected to parametric instability. The measured hreshold amplitudes for parametric and modulation instabilities are in agreement with theheoretical predictions. An influence of additional pumping in the form of both continuous wave and pulsed signals on the soliton formation was studied. It was shown that an additional pumping signal with duration t > t ¤, and amplitude above the threshold of the parametric instability, suppressed the MSSW soliton. Numerical modelling of the pulsewidth dependence on the microwave power during the propagation in the FDM structure are in agreement with the experimental observations. Moreover, pulse narrowing due tohe induced phase modulation of the input pulse was numerically predicted.
1. Marcelli R., Nikitov S.A. Nonlinear Microwave Signal Processing: Towards a New Range of Devices. Kluwer Acad. Publ., 1996.
2. Звездин А.К., Попков А.Ф. К нелинейной теории магнитостатических спиновых волн // ЖЭТФ. 1983. Т. 84, вып. 2. С. 606.
3. Калиникос Б.А., Ковшиков Н.Г., Славин А.Н. Наблюдение спин-волновых солитонов в ферромагнитных пленках // Письма в ЖЭТФ. 1983. Т. 38, No 7. С. 343.
4. De Gasperis P., Marcelli R., Miccoli G. Magnetostatic soliton propagation at microwave frequency in magnetic garnet films // Phys. Rev. Lett. 1987. Vol. 59, No4. P. 481.
5. Tsankov M.A., Chen M., Patton C.E. Forward volume wave microwave envelope solitons in yttrium iron garnet films: Propagation, decay, and collision // J. Appl. Phys. 1994. Vol. 76, No7. P. 4274.
6. Kalinikos B.A., Kovshikov N.G., Patton C.E. Self-generation of microwave magnetic envelope soliton trains in yttrium iron garnet thin films // Phys. Rev. Lett. 1988. Vol. 80. P. 4301.
7. Chen M., Tsankov M.A., Nash J.M., Patton C.E. Backward volume wave solitons in a yttrium iron garnet film: abstract // J. Appl. Phys. 1993. Vol. 74, No 3. P. 2146.
8. Chen M., Tsankov M.A., Nash J.M., Patton C.E. Backward volume wave soitons in a yttrium iron garnet film // Phys. Rev. B. 1994. Vol. 49. P. 12773.
9. Nash J.M., Patton C.E., Kabos P. Microwave-envelope soliton threshold powers and soliton numbers // Phys. Rev. B. 1995-I. Vol. 51, No21. P. 15079.
10. Nash J.M., Kabos P., Staudinger R., Patton C.E. Phase profiles of microwave magnetic envelope solitons // J. Appl. Phys. 1998. Vol. 83, No5. P. 2689.
11. Scott M.M., Fetisov Yu.K., Synogach V.T., Patton C.E. Suppression of microwave magnetic envelope solitons by continuous wave magnetostatic wave signals // J. Appl. Phys. 2000. Vol. 88, No7. P. 4232.
12. Kalinikos B.A., Kovshikov N.G., Kolodin P.A., Slavin A.N. Observation of dipole-exchange spin wave soliton in tangentially magnetised ferromagnetic films // Sol. State Comm. 1990. Vol. 74, No9. P. 989.
13. De Wames R.E., Wolfram T. Dipole-exchange spin waves in ferromagnetic films // J. Appl. Phys. 1970. Vol. 41, No 3. P. 987.
14. Гуляев Ю.В., Бугаев А.С., Зильберман П.Е., Игнатьев И.А., Коновалов А.Г., Луговской А.В., Медников А.М., Нам Б.П., Николаев Е.И. Гигантские осцилляции прохождения квазиповерхностной спиновой волны через тонкую пленку железо-иттриевого граната (ЖИГ) // Письма в ЖЭТФ. 1979. Т. 30, вып. 9. С. 600.
15. Бордман А.Д., Никитов С.А. К теории нелинейных поверхностных магнитостатических волн // ФТТ. 1989. Т. 31, вып. 6. С. 281.
16. Nikitov S.A., Jun Su, Marcelli R., De Gasperis P. Modulatiom instability of surface magnetostatic waves in ferromagnetic films // JMMM. 1995. Vol. 145. P. L6.
17. Synogach V.T., Fetisov Yu.K., Mathieu Ch., Patton C.E. Ultrashort microwave pulses generated due to three magnon interactions // Phys. Rev. Lett. 2000. Vol. 85, No10. P. 2184.
18. Гуляев Ю.В., Зильберман П.Е., Никитов С.А., Темирязев А.Г. Неустойчивость интенсивных магнитостатических волн в нормально намагниченных тонких ферромагнитных пленках // ФТТ. 1987. Т. 29, вып. 6. С. 1794.
19. Kabos P., Xia H., Zhang H., Kolodin P.A., Patton C.E. Brillouin light scattering and magnon wave vector distributions for microwave magnetic envelope solitons in thin films // International symposium on spin waves. St. Petersburg, Russia, 1998.
20. Кокин А.В., Никитов С.А. Влияние непрерывной накачки на распространение солитонов огибающей магнитостатических спиновых волн // ФТТ. 2001. Т. 43, вып. 5. С. 851.
21. Короткевич А.О., Никитов С.А. Фазовая кросс-модуляция поверхностных магнитостатических спиновых волн // ЖЭТФ. 1999. Т. 116, вып. 6(12). С. 2058.
22. Boyle J.W., Nikitov S.A., Boardman A.D., Xie K. Observation of cross-phase induced modulation instability of travelling magnetostatic waves in ferromagnetic films // J. Mag. Magn. Mater. 1997. Vol. 173. P. 241.
23. Marcelli R., Nikitov S.A. Magnetostatic surface wave solitons induced by crossphase modulation // Europhys. Lett. 2001. Vol. 54, No1. P. 91.
24. Казаков Г.Т., Кожевников А.В., Филимонов Ю.А. Влияние параметрически возбужденных спиновых волн на дисперсию и затухание поверхностных магнитостатических волн в ферритовых пленках // ЖЭТФ. 1999. Т. 115, No1. С. 318.
25. Satsuma J., Yajima N. Initial value problems of one-dimensional self modulation of nonlinear waves in dispersive media // Progr. Theoret. Phys. Supplement. 1974. Vol. 55. P. 284.
26. Вайнштейн Л.А. Распространение импульсов // УФН. 1976. Т. 118, No2. С. 339.
27. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988. 312 c.
28. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979. 384 c.
29. O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finitesamples // J. Appl. Phys. 1978. Vol. 49, No9. P. 4886.
30. Adam J.D. A broadband microwave signal to noise enchancer // IEEE Trans. On Magn. 1980. Vol. 5, No5. P. 1168.
31. Stitzer S.N., Emtage P.R. Nonlinear microwave signal-processing devices using thin ferrimagnetic films // Circ. Syst. Signal Proces. 1985. Vol. 4, No1–2. P. 227.
32. Казаков Г.Т., Кожевников А.В., Филимонов Ю.А. Четырехмагнонный распад поверхностных магнитостатических волн в пленках железо-иттриевого граната // ФТТ. 1997. Т. 39. No7. С. 330.
33. Suhl H. The theory of ferromagnetic resonance at high signal powers // J. Phys. Chem. Solids. 1957. Vol. 1. P. 209.
34. Kalinikos B.A., Kovshikov N.G., Slavin A.N. Effect of magnetic dissipation on propagation of dipole spin-wave envelope solitons in yttrium iron garnet films // IEEE Trans. Magn. 1992. Vol. 28. P. 3207.
35. Chen M., Nash J.M., Patton C.E. J. A numerical study of nonlinear Schrodinger equation solution for microwave soliton in magnetic thin films // J. Appl. Phys. 1993. Vol. 73, No8. P. 3906.
36. Boardman A.D., Nikitov S.A., Waby N.A., Putman R., Metha H.M. and Wallis R.F. Effect of third-order dispersion on nonlinear magnetostatic spin waves in feromagnetic films // Phys. Rev. B. 1998. B57. P. 10667.
37. Kindyak A.S., Scott M.M., Patton C.E. Numerical analysis of nonlinear pulse propagation in ferrite-dielectric-metal structure based on the nonlinear Schrodinger equation with higher order term // J. Appl. Phys. 2003. Vol. 93, No 8. P. 4739.
38. Dudko G.M., Filimonov Yu.A., Galishnikov A.V., Marcelli R., Nikitov S.A. Nonlinear Schrodinger equation analysis of MSSW pulse propagation in ferrite-dielectric-metal structure // Journal on Magnetism and Magnetic Materials. 2004. Vol. 272–275, part 2. P. 999.
39. Галишников А.А., Дудко Г.М., Филимонов Ю.А. Численное моделирование распространения импульсов поверхностных магнитостатических волн в структуре феррит – диэлектрик – металл // РЭ. 2004. Т. 40, No 2. С. 228.
40. Костылев М.П., Ковшиков Н.Г. Возбуждение, формирование и распространение солитоноподобных спин-волновых импульсов в ферромагнитных пленках (численный расчет и эксперимент) // ЖТФ. 2002. Т. 72, No 11. С. 5.
41. Mckinstrie C.J., Bingham R. The modulation instability of coupled waves // Phys. Fluids B. 1989. Vol. 1, No 1. P. 231.
42. Рыскин Н.М. Связанные нелинейные уравнения Шредингера для описания распространения многочастотных волновых пакетов в нелинейной среде с дисперсией // ЖЭТФ. 1994. Т. 106, No 5(11). С. 1542.
43. Галишников А.А., Дудко Г.М., Филимонов Ю.А. Численное моделирование установления солитонного режима распространения импульсов магнитостатических волн // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 5–6. С. 113.
44. Marcelli R., Nikitov S.A., Filimonov Yu.A., Galishnikov A.A., Kozhevnikov A.V., DudkoG.M. Magnetostatic surface wave bright solitons propagation in ferrite-dielectric-metal structure // IEEE Trans. on Magn. 2006. Vol. 42, No6 (принята к печати).
45. Галишников А.А., Кожевников А.В., Марчелли Р., Никитов С.А., Филимонов Ю.А. Распространение прямоугольных импульсов магнитостатических волн в пленках железоиттриевого граната // ЖТФ. 2006. Т. 76, вып. 5. С. 62.
46. Галишников А.А., Кожевников А.В., Филимонов Ю.А. Компрессия прямоугольных импульсов в линейной диспергирующей среде // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 1–2. C. 63.
BibTeX
author = {А. А. Galishnikov and G. М. Dudko and А. V. Kozhevnikov and S. А. Nikitov and Yu. А. Filimonov },
title = {MAGNETOSTATIC SURFACE WAVE PULSES SELF-ACTION EFFECTS UNDER PROPAGATION IN FERRITE-DIELECTRIC-METAL STRUCTURES},
year = {2006},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {14},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/magnetostatic-surface-wave-pulses-self-action-effects-under-propagation-in-ferrite},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-3-3-33},pages = {3--33},issn = {0869-6632},
keywords = {-},
abstract = {Magnetostatic surface wave (MSSW) bright solitons in a ferrite-dielectric-metal FDM) structure have been studied experimentally and numerically in the framework of he nonlinear Schr¨ odinger equation. The attention was focused on the influence of the parametric instability on the soliton formation and propagation. We also discussed the contribution of the non-solitary (dispersive wave) part of the MSSW pulse on the soliton propagation, to show that their mutual interference leads to the levelling off or to the appearance of some peaks in the MSSW pulse output vs the input amplitude. We have also shown that for MSSW pulses with rectangular shape, the linear pulse compression caused by an induced phase modulation of the input pulse must be taken into account. It was found experimentally for MSSW with wavelength l ¼ h that the modulation nstability leads to soliton formation for rectangular input pulses with duration t less han the characteristic transient time t ¤ needed for the onset of the parametric instability, while pulses with t > t¤ are mainly subjected to parametric instability. The measured hreshold amplitudes for parametric and modulation instabilities are in agreement with theheoretical predictions. An influence of additional pumping in the form of both continuous wave and pulsed signals on the soliton formation was studied. It was shown that an additional pumping signal with duration t > t ¤, and amplitude above the threshold of the parametric instability, suppressed the MSSW soliton. Numerical modelling of the pulsewidth dependence on the microwave power during the propagation in the FDM structure are in agreement with the experimental observations. Moreover, pulse narrowing due tohe induced phase modulation of the input pulse was numerically predicted. }}