NOISE-INDUCED EFFECTS IN THE DOUBLE-WELL OSCILLATOR WITH VARIABLE FRICTION
Cite this article as:
Semenov V. V., Neiman A. B., Vadivasova Т. Е., Anishenko V. S. NOISE-INDUCED EFFECTS IN THE DOUBLE-WELL OSCILLATOR WITH VARIABLE FRICTION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2016, vol. 24, iss. 1, pp. 5-15. DOI: https://doi.org/10.18500/0869-6632-2016-24-1-5-15
A model of bistable stochastic oscillator with dynamical variables depending on dissipation is offered. Considered system demonstrates stochastic P-bifurcations and non-monotonic dependence of the mean oscillation frequency on the noise intensity. An effective noise intensity and an effective potential are introduced for a quantitative description of the observed effects.
DOI:10.18500/0869-6632-2016-24-1-5-15
Paper’s reference: Semenov V.V., Neiman A.B., Vadivasova T.E., Anishchenko V.S. Noise-induced effects in the double-well oscillator with variable friction. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 1. P. 5–15.
1. Horsthemke W., Lefever R. Noise-induced Transitions. Berlin: Springer, 1984.
2. Graham R. Macroscopic potentials, bifurcations and noise in dissipative systems // Noise in Nonlinear Dynamical Systems. Vol.1: Theory of Continuous Fokker-Planck Systems / Ed. by. F. Moss and P.V.E. McClintock. Cambridge: Cambridge University Press, 1989.
3. Arnold L. Random Dynamical System. Berlin: Springer, 2003.
4. Sri Namachshivaya N. Stochastic bifurcation// Appl. Math. And Computation. 1990. Vol. 38. P. 101.
5. Kramers H.A. Brownian motion in a field of force and the diffusion model of chemical reactions // Physica. 1940. Vol. 7. P. 284.
6. Hanggi P., Talkner P., Borkovec M. ̈ Reaction rate theory: Fifty years after Kramers // Rev. Mod. Phys. 1990. Vol. 62. P. 251.
7. Anishchenko V., Astakhov V., Neiman A., Vadivasova T., Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Second Edition. Berlin: Springer, 2007.
8. Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems // Physics Reports. 2004. Vol. 392. P. 321.
9. Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S. Stochastic resonance in bistable systems// Phys. Rev. Lett. 1989. Vol. 62. P. 349.
10. Anishchenko V.S., Neiman A.B., Moss F., Schimansky-Geier L. Stochastic resonance: Noise-enhanced order// Phys. Usp. 1989. Vol. 42. P. 7.
11. Pikovsky A., Kurths J. Coherence resonance in a noisy driven excitable system // Phys. Rev. Lett. 1997. Vol. 78. P. 775.
12. Lindner B., Schimansky-Geier L. Analitical approach to the stochastic FizHugh–Nagumo system and coherence resonance // Phys. Rev. E. 1999. Vol. 60, No 6. P. 7270.
13. Neiman A.B. Synchronization like phenomena in coupled stochastic bistable systems // Phys. Rev. E. 1994. Vol. 49. P. 3484.
14. Shulgin B., Neiman A., Anishchenko V. Mean switching frequency locking in stochastic bistable system driven by a periodic force // Phys. Rev. Lett. 1995. Vol. 75, No 23. P. 4157.
15. Han S.K., Yim T.G., Postnov D.E., Sosnovtseva O.V. Interacting coherence resonance oscillators // Phys. Rev. Lett. 1999. Vol. 83, No 9. P. 1771.
16. Sanchez E., Mat ́`ias M.A., Perez-Mu ` nuzuri V. ̃ Analysis of synchronization of chaotic systems by noise: An experimental study // Phys. Rev. E. 1997. Vol. 56, No 4. P. 40.
17. Goldobin D.S., Pikovsky A. Synchronization and desynchronozation of self-sustained oscillators by common noise // Phys. Rev. E. 2005. Vol. 71. P. 045201(4).
18. Koronovskii A.A., Moskalenko O.I., Trubetskov D.I., Khramov A.E. Generalized synchronization and noise-induced synchronization: the same type of behavior of coupled chaotic systems // Doklady Physics. 2006. Vol. 51. P. 189.
19. Schimansky-Geier L., Herzel H. Positive Lyapunov exponents in the Kramers oscillator // Journal of Statistical Physiks. 1993. Vol. 70. P. 141.
20. Arnold L., Imkeller P. Stochastic bifurcation of the noisy Duffing oscillator. Report, Institut fur Dynamische Systeme. Universit ̈ at Bremen, 2000. ̈
21. Freund J.A., Schimansky-Geier L., Hanggi P. ̈ Frequency and phase synchronization in stochastic systems // Chaos. 2003. Vol. 13, P. 225.
22. Rice S.O. Mathematical analysis of random noise // Bell System Tech. J. 1944. Vol. 23. P. 282. Part 1; 1945. Vol. 24. P. 46. Part 2.
23. Nikitin N.N., Razevig V.D. Digital simulation of stochastic differential equations and error estimates // USSR Computational Mathematics and Mathematical Physics. 1978. Vol. 18. P. 102.
BibTeX
author = {Vladimir Victorovich Semenov and Alexander B. Neiman and Т. Е. Vadivasova and Vadim S. Anishenko},
title = {NOISE-INDUCED EFFECTS IN THE DOUBLE-WELL OSCILLATOR WITH VARIABLE FRICTION},
year = {2016},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {24},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/noise-induced-effects-in-the-double-well-oscillator-with-variable-friction},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2016-24-1-5-15},pages = {5--15},issn = {0869-6632},
keywords = {bistability,double-well oscillator,noise,stochastic bifurcations.},
abstract = {A model of bistable stochastic oscillator with dynamical variables depending on dissipation is offered. Considered system demonstrates stochastic P-bifurcations and non-monotonic dependence of the mean oscillation frequency on the noise intensity. An effective noise intensity and an effective potential are introduced for a quantitative description of the observed effects. DOI:10.18500/0869-6632-2016-24-1-5-15 Paper’s reference: Semenov V.V., Neiman A.B., Vadivasova T.E., Anishchenko V.S. Noise-induced effects in the double-well oscillator with variable friction. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 1. P. 5–15. Download full version }}