NUMERICAL SIMULATION OF ELECTRON-BEAM «SQUEEZED» STATE IN PURPOSE TO STUDY THE POSSIBILITY OF EFFECTIVE PLASMA FREQUENCY INCREASE


Cite this article as:

Petrik А. G. NUMERICAL SIMULATION OF ELECTRON-BEAM «SQUEEZED» STATE IN PURPOSE TO STUDY THE POSSIBILITY OF EFFECTIVE PLASMA FREQUENCY INCREASE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 5, pp. 80-91. DOI: https://doi.org/10.18500/0869-6632-2015-23-5-80-91


Three-dimensional electromagnetic numerical simulation is carried out of «squeezed» state of the electron beam in two-section vircator system with drift tubes of different diameters. We have studied the influence of two-section system geometric parameters on the nonlinear dynamics of electron beam. We have obtained an effective plasma frequency depending on the system parameters. From the calculated dependencies it can be concluded that the density of the beam and the effective plasma frequency can be increased more than twice relative to the system without the formation of the «squeezed» state.

 

Download full version

DOI: 
10.18500/0869-6632-2015-23-5-80-91
Literature

1. Trubetskov D.I., Hramov A.E. Lectures on Microwave Electronics for Physicists. Vol. 1. Moskva: Fizmatlit, 2003. (In Russian).

2. Benford J., Swegle J.A., Schamiloglu E. High Power Microwaves. CRC Press, Taylor and Francis, 2007.

3. Dubinov A.E., Selemir V.D. // Journal of Communications Technology and Electronics. 2002. Vol. 47, No 6. P. 575.

4. Dubinov A.E., Efimova I.A., Kornilova I.Yu., Saikov S.K., Selemir V.D., Tarakanov V.P. // Physics of Particles and Nuclei. 2004. Vol. 35, No 2. P. 251.

5. Didenko A.N., Krasik Ya.E., Pereligin S.F., Fomenko G.P. // Sov. J. Tech. Phys. Lett. 1979. Vol. 5. P. 128.

6. Trubetskov D.I., Hramov A.E. Lectures on microwave electronics for physicists. Vol. 2. Moskva: Fizmatlit, 2004. (In Russian).

7. Kurkin S.A., Badarin A.A., Koronovskii A.A., Hramov A.E. // Physics of Plasmas. 2014. Vol. 21, No 9. P. 093105.

8. Kurkin S.A., Hramov A.E., Koronovskii A.A. // Applied Physics Letters. 2013. Vol. 103. P. 043507.

9. Kalinin Yu.A., Koronovskii A.A., Hramov A.E., Egorov E.N., Filatov R.A. // Plasma Physics Reports. 2005. Vol. 31. P. 938.

10. Kalinin Yu.A., Hramov A.E. // Technical Physics. 2006. Vol. 51. P.558.

11. Hramov A.E., Koronovskii A.A., Kurkin S.A. // Applied Physics Letters. 2010, Vol. 374, No 30. P. 3057.

12. Dubinov A.E., Kornilova I.Yu., Selemir V.D. // Physics-Uspekhi. 2002. Vol. 45, No 11. P.1109.

13. Kurkin S.A., Koronovskii A.A., Hramov A.E. // J. Plasma Physics. 2015. Vol. 81. P. 905810320.

14. Krasik Ya.E., Dunaevsky A., Felsteiner J. // Physics of Plasmas. 2001. Vol. 8, No 5. P. 2466.

15. Shlapakovski A.S., Kweller T., Hadas Y., Krasik Ya.E., Polevin S.D., Kurkan I.K. // IEEE Transactions on Plasma Science. 2009. Vol. 37, No 7. P. 1233.

16. Dubinov A.E., Makarov I.V., Sadovoy S.A., Saikov S.K., Tarakanov V.P. // Technical Physics Letters. 2011, Vol. 37, Issue 3. P.230–232.

17. Ignatov A.M., Tarakanov V.P. // Physics of Plasmas. 1994. Vol. 1, No 3. P. 741.

18. Petrik A.G. // Izvestya VUZ. Prikladnaya Nelineynaya Dinamika. 2014. Vol.22, No6. S.35. (In Russian).

19. Egorov E.N., Koronovskii A.A., Kurkin S.A., Hramov A.E. // Plasma Physics Reports. 2013. Vol. 39, No 11. P. 925–935.

20. Dubinov A.E., Efimova I.A. // Electromagnetic Waves and Electronic Systems. 2003, Vol. 8, No 11–12. P. 55. (In Russian).

21. Dubinov A.E. // Tech. Phys. Lett. 1997. Vol.23. P. 870.

22. Bogdankevich L.S., Ruhadze A.A. // Sov. Physics Uspekhi. 1971, Vol. 14. P. 163.

23. https://www.cst.com/products/cstps.

24. Champeaux S., Gouard P., Cousin R., Larour J. 3-D PIC numerical investigations of a novel concept of multistage axial vircator for enhanced microwave generation // IEEE Transactions on Plasma Science. 2015. Vol. 43, No 11. P. 3841.

25. Kurkin S.A., Frolov N.S., Rak A.O., Koronovskii A.A., Kurayev A.A., Hramov A.E. // Applied Physics Letters. 2015. Vol. 106. P. 153503.

26. Kurkin S.A., Koronovskii A.A., Hramov A.E., Rak A.O. // IEEE International on Vacuum Electronics Conference (IVEC). 2014, P. 389.

27. Lebedev I.V. Microwave Devices. Vol. 1–2. Moskva: Vyschaya shkola, 1972. (In Russian).

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Петрик -IzvVUZ_AND-23-5-80,
author = {А. G. Petrik },
title = {NUMERICAL SIMULATION OF ELECTRON-BEAM «SQUEEZED» STATE IN PURPOSE TO STUDY THE POSSIBILITY OF EFFECTIVE PLASMA FREQUENCY INCREASE},
year = {2015},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {23},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/numerical-simulation-of-electron-beam-squeezed-state-in-purpose-to-study-the-possibility-of},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-5-80-91},pages = {80--91},issn = {0869-6632},
keywords = {Numerical simulation,«squeezed» state,virtual cathode,effective plasma fre- quency,relativistic electron beam,nonlinear dynamics.},
abstract = {Three-dimensional electromagnetic numerical simulation is carried out of «squeezed» state of the electron beam in two-section vircator system with drift tubes of different diameters. We have studied the influence of two-section system geometric parameters on the nonlinear dynamics of electron beam. We have obtained an effective plasma frequency depending on the system parameters. From the calculated dependencies it can be concluded that the density of the beam and the effective plasma frequency can be increased more than twice relative to the system without the formation of the «squeezed» state.   Download full version }}