PATTERNS IN EXCITABLE DYNAMICS DRIVEN BY ADDITIVE DICHOTOMIC NOISE
Cite this article as:
Henning D. ., Sailer . ., Schimansky-Geier L. . PATTERNS IN EXCITABLE DYNAMICS DRIVEN BY ADDITIVE DICHOTOMIC NOISE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 4, pp. 49-63. DOI: https://doi.org/10.18500/0869-6632-2009-17-4-49-63
Pattern formation due the presence of additive dichotomous fluctuations is studied an extended system with diffusive coupling and a bistable FitzHugh–Nagumo kinetics. The fluctuations vary in space and/or time being noise or disorder, respectively. Without perturbations the dynamics does not support pattern formation. With proper dichotomous fluctuations, however, the homogeneous steady state is destabilized either via a Turing instability or the fluctuations create spatial nuclei of an inhomogeneous states. Finally, for purely static dichotomous disorder we find destabilization of homogeneous steady states for finite nonzero correlation length of the disorder resulting again in spatial patterns.
1. Koch A.J., and Meinhardt H. Biological pattern formation: from basic mechanisms to complex strucctures // Rev. of Mod. Phys. 1994. Vol. 66. P. 1481.
2. Mikhailov A.S. Foundations of Synergetics I. 2nd Ed. Springer, Berlin-Heidelberg, New York, 1994.
3. Garcia-Ojalvo J., and Sancho J.M. Noise in Spatially Extended Systems. Springer- Verlag, New York, 1999.
4. Anishchenko V., Neiman A., Astakhov A., Vadivasova T. and Schimansky-Geier L. Chaotic and Stochastic Processes in Dynamic Systems. Springer, Berlin-Heidelberg-New York, 2002.
5. Lindner B., Garcia-Ojalvo J., Neiman A., and Schimansky-Geier L. // Phys. Rep. 2004. Vol. 392. 321.
6. Sagues F., Sancho J.M., and Garcia-Ojalvo J. // Rev. Mod. Phys. 2008.
7. Mikhailov A.S. // Z. Phys. B. 1981. Vol. 41. 277.
8. Garcia-Ojalvo J., and Sancho J.M., and Ramirez-Piscina L. // Phys. Lett. A. 1992. Vol. 168. 35.
9. Parrondo J.M.R., C. van den Broeck, Buceta J., and F.J. de la Rubia. // Physica A. 1996. Vol. 224. 153.
10. Zaikin A.A. and Schimansky-Geier L. // Phys. Rev. E. 1998. Vol. 58. P. 4355.
11. Kawai R., Sailer X., Schimansky-Geier L., and Van den Broeck C. Macroscopic limit cycle via pure noise-induced phase transitions // Phys. Rev. E. 2004. Vol. 69. 051104.
12. Buceta J., Ibanes M., Sancho J.M., and Lindenberg K. // Phys. Rev. E. 2003. Vol. 67. 021113.
13. Buceta J., Lindenberg K., and Parrondo J.M.R. Stationary and oscillatory spatial patterns induced by global periodic switching // Phys. Rev. Lett. 2002. Vol. 88. 024103.
14. Buceta J., Lindenberg K., and Parrondo J.M.R. // Phys. Rev. E. 2002. Vol. 66. 036216.
15. Buceta J., and Lindenberg K. // Phys. Rev. E. 2002. Vol. 66. 046202.
16. Buceta J. and Lindenberg K. Spatial patterns induced purely by dichotomous disorder // Phys. Rev. E. 2003. Vol. 68. 011103.
17. FitzHugh R. // Biophys. J. 1961. Vol. 1. 445.
18. Nagumo J. and Arimoto S. and Yoshitzawa S. // Proc. IRE. 1962. Vol. 50. 2061.
19. Vasilev V.A., Romanovski Yu.M., and Yakhno V.G. // Uspekhi Fiz. Nauk. 1979. Vol. 128. 626.
20. Elphick C., Hagberg A., and Meron E. Dynamic front transitions and spiral-vortex nucleation // Phys. Rev. E. 1995. Vol. 51. 3052.
21. Martinez K., Lin A.L., Kharrazian R., Sailer X., and Swinney H.L. Resonance in periodically inhibited reaction-diffusion systems // Physica D. 2002. Vol. 168. 1.
22. Sailer X.R., Hennig D., Engel H., and Schimansky-Geier L. // Phys. Rev. E. 2006. Vol. 73. 056209.
23. Koga S. and Kuramoto Y. Localized patterns in reaction-diffusin systems // Prog. of Theor. Phys. 1980. Vol. 63. 106.
24. Rinzel J. and Keller J.B. Traveling wave solutions of nerve conduction equation // Biophys. J. 1973. Vol. 13. 1313.
25. Ohta T., Mimura M., and Kobayashi R. Higher-dimensional localized patterns in excitable media // Physica D. 1989. Vol. 34. 1115.
26. Ohta T., Ito A., and Tetsuka A. Self-organization in an excitable reaction-diffusion system: Synchronization of oscillatory domains in one dimension // Phys. Rev. A. 1990. Vol. 42. 3225.
27. Harmer G.P. and Abott D. Losing strategies can win by Parrondo’s paradox // Nature (London). 1999. Vol. 199. 402.
28. Schimansky-Geier L., Hempel H., Bartussek R. and Zulicke C. ̈ // Z. Physik B. 1995.Vol. 96. 417.
BibTeX
author = {Dirk Henning and Franz Xaver Sailer and Lutz Schimansky-Geier},
title = {PATTERNS IN EXCITABLE DYNAMICS DRIVEN BY ADDITIVE DICHOTOMIC NOISE},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/patterns-in-excitable-dynamics-driven-by-additive-dichotomic-noise},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-4-49-63},pages = {49--63},issn = {0869-6632},
keywords = {FitzHugh–Nagumo,Turing pattern,dichotomic noise,additive noise.},
abstract = {Pattern formation due the presence of additive dichotomous fluctuations is studied an extended system with diffusive coupling and a bistable FitzHugh–Nagumo kinetics. The fluctuations vary in space and/or time being noise or disorder, respectively. Without perturbations the dynamics does not support pattern formation. With proper dichotomous fluctuations, however, the homogeneous steady state is destabilized either via a Turing instability or the fluctuations create spatial nuclei of an inhomogeneous states. Finally, for purely static dichotomous disorder we find destabilization of homogeneous steady states for finite nonzero correlation length of the disorder resulting again in spatial patterns. }}