На примере нелинейной популяционной модели Ферхюльста исследуется чувствительность циклов системы к случайным возмущениям. Анализ стохастической чувствительности осуществляется с использованием систем первого приближения. Демонстрируется соответствие полученных в численном эксперименте результатов теоретическим. Выявлена закономерность роста чувствительности циклов системы Ферхюльста при переходе к хаосу через каскады бифуркаций удвоения периода.