Attractor

PARAMETRIC GENERATORS WITH CHAOTIC AMPLITUDE DYNAMICS CORRESPONDING TO ATTRACTORS OF SMALE–WILLIAMS TYPE

A new approach is considered to design of parametric generators of chaos with hyperbolic attractors on the basis of two alternately excited subsystems, each consisting of three oscillators, one of which plays the role of the pump source. In contrast to previously proposed schemes, the angular variable undergoing a multiple increase over each characteristic period is a quantity characterizing the amplitude ratio of two oscillators, rather then the phase of successive oscillation trains.

ON SCENARIOS OF HYPERBOLIC CHAOS DESTRUCTION IN MODEL MAPS ON TORUS WITH DISSIPATIVE PERTURBATION

In this paper we investigate modified «Arnold cat» map with dissipative terms, in which a hyperbolic chaos exists for small perturbation magnitudes, and in a certain range a hyperbolic chaotic attractor with Cantor transversal structure takes place, collapsing with a further perturbation amplitude increase.

SYSTEM OF THREE NONAUTONOMOUS OSCILLATORS WITH HYPERBOLIC CHAOS Part I The model with dynamics on attractor governed by Arnold’s cat map on torus

In this paper a system of three coupled nonautonomous self­oscillatory elements is studied, in which the behavior of oscillators phases on a period of the coefficients variation in the equations corresponds to the Anosov map demonstrating chaotic dynamics. Results of numerical studies allow us to conclude that the attractor of the Poincare map can be viewed as an object roughly represented by a two­dimensional torus embedded in the sixdimensional phase space of the Poincare map, on which the dynamics is the hyperbolic chaos intrinsic to Anosov’s systems.

AUTONOMOUS SYSTEM GENERATING HYPERBOLIC CHAOS: CIRCUIT SIMULATION AND EXPERIMENT

We consider an electronic device, which represents an autonomous dynamical system with hyperbolic attractor of the Smale–Williams type in the Poincare map. Simulation ´ of chaotic dynamics in the software environment Multisim has been undertaken. The generator of hyperbolic chaos is implemented as a laboratory model; its experimental investigation is carried out, and good compliance with the observed dynamics in the numerical and circuit simulation has been demonstrated.

Pages