REGULAR AND CHAOTIC DYNAMICS OF TWO-RING PHASE LOCKED SYSTEM Part 1 Dynamics of frequency-phase system with identical first-order filters in control circuits


Cite this article as:

Пономаренко В. П. REGULAR AND CHAOTIC DYNAMICS OF TWO-RING PHASE LOCKED SYSTEM Part 1 Dynamics of frequency-phase system with identical first-order filters in control circuits. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 2, pp. 25-35. DOI: https://doi.org/10.18500/0869-6632-2014-22-2-25-35


We present the results of investigation of dynamical modes in the model of oscillatory system with frequency-phase control using multi-frequency discriminator inversely switched in the chain of frequency control. The study was carried out on the basis of mathematical model of the system with one degree of freedom with the use of qualitative and numerical methods of nonlinear dynamics. It is shown that in such a system may be realized both synchronous and great number of non-synchronous periodic modes. Location parameters domains are established with different dynamic modes of the system. The processes developing in the domain of instability of the synchronous mode are considered.

DOI: 
10.18500/0869-6632-2014-22-2-25-35
Literature

1. Капранов М.В. О полосе захвата при частотно-фазовой автоподстройке // Науч. докл. высш. школы. Сер. «Радиотехника и электроника». 1958. Т. 2, No 9. С. 162.

2. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. М.: Связь, 1972. 448 с.

3. Ходаковский В.А., Бычков В.Г. Оптимальное устройство синхронизации при больших частотных нестабильностях радиоканала // Изв. вузов. Радиоэлектроника. 1974. Т. 17, No 4. С. 29.

4. Каганов В.И., Терещенко С.В. Помехоустойчивость двухкольцевой системы автоматического управления // Радиотехника и электроника. 2012. Т. 57, No 3. С. 353.

5. Шалфеев В.Д., Матросов В.В. Нелинейная динамика систем фазовой синхронизации. Нижний Новгород: Изд-во Нижегородского госуниверситета, 2013. 366 с.

6. M. Gardner. Phase lock techniques, third ed. Hoboken, NJ: John Wiley & Sons; 2005. 421p.

7. Пономаренко В.П., Тихонов Е.А. Динамика автогенератора с частотно-фазовым управлением при инверсии характеристики частотного дискриминатора // Известия вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 6. С. 75.

8. Пономаренко В.П., Тихонов Е.А. Хаотическая и регулярная динамика автогенераторной системы с нелинейной петлей частотно-фазового управления // Радиотехника и электроника. 2004. Т. 49, No 2. С. 205.

9. Матросов В.В. Динамические свойства генератора с частотно-фазовым управлением // Известия вузов. Радиофизика. 2004. Т. 47. No 4. С. 334.

10. Матросов В.В. Моделирование динамики системы частотно-фазовой автоподстройки с фильтрами первого порядка // Вестник Нижегородского университета им. Н.И. Лобачевского. Сер. «Математическое моделирование и управление». 2006. Вып. 2(31). С. 17.

11. Пономаренко В.П. Динамические режимы в моделях автогенераторных систем с частотным и частотно-фазовым управлением // Известия вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 3. С. 33.

12. Пономаренко В.П. Динамические режимы и нелинейные эффекты в автогенераторе с частотно-фазовым управлением // Известия вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 6. С. 18.

13. Дмитриев А.С., Широков М.Е. Выбор генератора для прямохаотической системы связи // Радиотехника и электроника. 2004. Т. 49, No 7. С. 840.

14. Дмитриев А.С., Клецов А.В., Кузьмин Л.В. Генерация сверхширокополосного хаоса в дециметровом диапазоне // Радиотехника и электроника. 2009. Т. 54, No 7. С. 709.

15. Пономаренко В.П., Заулин И.А. Динамика автогенератора, управляемого петлей частотной автоподстройки с инвертированной характеристикой дискриминатора // Радиотехника и электроника. 1997. Т. 42, No 7. С. 828.

16. Пономаренко В.П. Формирование сложных колебаний в автогенераторной системе с нелинейной цепью частотного управления // Радиотехника и электроника. 1999. Т. 44, No 5. С. 565.

17. Пономаренко В.П. Моделирование эволюции динамических режимов в автогенераторной системе с частотным управлением // Известия вузов. Прикладная нелинейная динамика. 1997. Т. 5, No 5. С. 44.

18. Пономаренко В.П., Матросов В.В. Самоорганизация временных структур в мультиравновесной автогенераторной системе с частотным управлением // Журнал технической физики. 1997. Т. 67, No 3. С.1.

19. Пономаренко В.П., Матросов В.В. Сложная динамика автогенератора, управляемого петлей частотной автоподстройки с комбинированным дискриминатором // Радиотехника и электроника. 1997. Т. 42, No 9. С. 1125.

20. Капранов М.В., Романов Е.В. Линейные модели системы ЧАП с дискриминатором на линии задержки // Радиотехника. 1988. No 11. С. 34.

21. Капранов М.В. Связь запаздывания сигнала в волоконно-оптической линии задержки с параметрами каскадно-кольцевых ФАП на границе устойчивости // В кн. Радиотехнические устройства пьезоэлектроники. Омск, 1985.

22. Каганов В.И. Радиоэлектронные системы автоматического управления. Компьютеризированный курс: Учебное пособие для вузов. М.: Горячая линия–Телеком, 2009. 432 с.

23. Заулин И.А., Пономаренко В.П. Анализ динамических процессов в статических системах синхронизации // Радиотехника и электроника. 1989. Т. 33, No 1. С. 106.

24. Заулин И.А., Пономаренко В.П. Синхронные и автоколебательные режимы в многоустойчивых системах с фазовым управлением // Радиотехника и электроника. 1993. Т. 38, No 4. С. 732.

25. Мишагин К.Г., Шалфеев В.Д., Пономаренко В.П. Нелинейная динамика систем фазирования в антенных решетках: Учебное пособие. Н. Новгород: Изд-во Нижегородского госуниверситета, 2007. 188 с.

26. Томашевский А.И., Капранов М.В. Регулярные и хаотические колебания в системах автоматической подстройки фазы усилителей // Вестник МЭИ. 1999. No 5. С. 64.

27. Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости. М.: Наука, 1990. 488 с.

28. Динамика нелинейных систем. Программный комплекс для исследования нелинейных динамических систем с непрерывным временем: Учебно-методическая разработка / Сост. В.В. Матросов. Н. Новгород: ННГУ, 2002. 54 с.

29. Баутин Н.Н. Поведение динамических систем вблизи границ области устойчивости. М.: Наука, 1984. 176 с.

30. Пономаренко В.П. Нелинейные эффекты в автогенераторной системе с частотнофазовым управлением // Известия вузов. Прикладная нелинейная динамика. 2012. Т. 20, No 4. С. 66–84.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Пономаренко-IzvVUZ_AND-22-2-25,
author = {V. P. Ponomarenko },
title = {REGULAR AND CHAOTIC DYNAMICS OF TWO-RING PHASE LOCKED SYSTEM Part 1 Dynamics of frequency-phase system with identical first-order filters in control circuits},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/regular-and-chaotic-dynamics-of-two-ring-phase-locked-system-part-1-dynamics-of-frequency},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-2-25-35},pages = {25--35},issn = {0869-6632},
keywords = {Systems with frequency-phase control,dynamical states,stability,bifurcation,phase portraits,synchronous and non-synchronous modes.},
abstract = {We present the results of investigation of dynamical modes in the model of oscillatory system with frequency-phase control using multi-frequency discriminator inversely switched in the chain of frequency control. The study was carried out on the basis of mathematical model of the system with one degree of freedom with the use of qualitative and numerical methods of nonlinear dynamics. It is shown that in such a system may be realized both synchronous and great number of non-synchronous periodic modes. Location parameters domains are established with different dynamic modes of the system. The processes developing in the domain of instability of the synchronous mode are considered. }}