32 GHZ СOLD CATHODE MAGNETRON WITH SPAСE HARMONICS – NONLINEAR ANALYTICAL CALCULATION AND 3D-SIMULATION
Cite this article as:
Yeryomka V. D., Kopot М. А., Kulagin O. P. 32 GHZ СOLD CATHODE MAGNETRON WITH SPAСE HARMONICS – NONLINEAR ANALYTICAL CALCULATION AND 3D-SIMULATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 3, pp. 53-62. DOI: https://doi.org/10.18500/0869-6632-2014-22-3-53-62
The analytical estimation of the optimal parameters fulfilled for pulsed magnetrons with cold secondary-emission cathodes, operating at a frequency of 32 GHz with anode voltage of 8 kV and with magnetic field of about 0.4 Tesla. As shown, the geometry of the magnetron interaction space can ensure an interaction between electrons and the high-frequency field as for the (−1)-th space harmonic of π/2-oscillations, so for (+1)- th space harmonic π-oscillations in the drift-orbit resonance mode. Three-dimensional numerical experiments show that both modifications of the tube can provide the required power characteristics. The possibility to use the chosen non-linear analytical model for preliminary calculations of the operating parameters of the non-classical M- type spatia-lharmonics tubes is confirmed.
1. Грицаенко С.В., Ерёмка В.Д., Копоть М.А., Кулагин О.П. и др. Многорезонаторные магнетроны с холодным вторично-эмиссионным катодом: Достижения, проблемы и перспективы // Радиофизика и электроника. Сборник научных трудов ИРЭ им. А.Я. Усикова НАН Украины. 2004. Т. 10, спец. вып. С. 499.
2. Шлифер Э.Д. Расчет многорезонаторных магнетронов. М.: МЭИ, 1966. 143 с.
3. Бабенко М. И., Вигдорчик И. М., Половин Р. В., Яновский М.С. Магнетрон с боковым катодом. Препринт No 31. Харьков: Изд. ИРЭ АН УССР, 1974. 47 с.
4. Kulagin O.P., Yeryomka V.D. Optimal conditions for drift-orbital resonance in M-type devices // IEEE Trans. Plasma Science. June, 2004. Vol. 32, No 3. P. 1181.
5. Кулагин О.П., Ерёмка В.Д. Дрейфово-орбитальные режимы в магнетронных генераторах миллиметровых волн // Радиофизика и электроника. Харьков: Институт радиофизики и электроники НАН Украины. 2003. Т. 8, No 3. С. 81.
6. Avtomonov N.I., Sosnytskiy S.V., Vavriv D.M. Dependence of magnetron characteristics on the secondary-emission yield of cold cathode // Вопросы атомной науки и техники. Серия: Плазменная электроника и новые методы ускорения (5). 2006. No 5. C. 225.
7. Красников М.Ю. О резонансном взаимодействии в цилиндрическом магнетроне // Изв. вузов. Радиофизика. 1980. Т. XXIII, No 1. С. 113.
8. Капица П.Л. Электроника больших мощностей. М.: Изд-во АН СССР, 1962. 195 с.
9. Вайнштейн Л.А. Лекции по сверхвысокочастотной электронике / Л.А. Вайнштейн, В.А. Солнцев. М.: Сов. Радио, 1973. 400 с.: ил.
10. Yeryomka V.D., Kopot’ M.A., Kulagin O.P., Tishchenko A.S., Naumenko V.D., Suvorov A.N., Jung-Il Kim. Simulation and experimental breadboarding of 35 GHz spatial harmonic magnetrons with cold cathode // 20-я Международная Крымская конф. «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо’2010), Украина, 2010, Труды конф. Т. 1. С. 310.
11. Rodney J., Vaughan M. A new formula for secondary emission yield// IEEE Trans-action on electron devices. September 1989. Vol. 36, No 9. P. 1963.
12. Rodney J., Vaughan M. Secondary emission formulas// IEEE Transaction on electron devices. April 1993. Vol. 40, No 4. P. 830.
BibTeX
author = {Victor Danilovich Yeryomka and М. А. Kopot and O. P. Kulagin},
title = {32 GHZ СOLD CATHODE MAGNETRON WITH SPAСE HARMONICS – NONLINEAR ANALYTICAL CALCULATION AND 3D-SIMULATION},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/32-ghz-sold-cathode-magnetron-with-spase-harmonics-nonlinear-analytical-calculation-and-3d},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-3-53-62},pages = {53--62},issn = {0869-6632},
keywords = {Drift-orbital resonance,spatial harmonics magnetrons,three-dimensional numerical model,non-linear analytical model.},
abstract = {The analytical estimation of the optimal parameters fulfilled for pulsed magnetrons with cold secondary-emission cathodes, operating at a frequency of 32 GHz with anode voltage of 8 kV and with magnetic field of about 0.4 Tesla. As shown, the geometry of the magnetron interaction space can ensure an interaction between electrons and the high-frequency field as for the (−1)-th space harmonic of π/2-oscillations, so for (+1)- th space harmonic π-oscillations in the drift-orbit resonance mode. Three-dimensional numerical experiments show that both modifications of the tube can provide the required power characteristics. The possibility to use the chosen non-linear analytical model for preliminary calculations of the operating parameters of the non-classical M- type spatia-lharmonics tubes is confirmed. }}