FORMATION AND BREAKDOWN OF A MULTILAYERED CLOSED CURVE IN NONINVERTIBLE MAPS


Cite this article as:

Zhusubaliyev Z. Т., Yanochkina О. О. FORMATION AND BREAKDOWN OF A MULTILAYERED CLOSED CURVE IN NONINVERTIBLE MAPS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 1, pp. 51-60. DOI: https://doi.org/10.18500/0869-6632-2010-18-1-51-60


The paper describes the mechanism for the formation of closed invariant curves that are formed as layered structures of several sets of interlacing manifolds each with their associated stable or unstable resonance modes. Such invariant curves can arise, for instance, if the saddle cycle on a «simple resonance curves» undergoes period­doubling or pitchfork bifurcations transversely to the circumference of the closed curve.

DOI: 
10.18500/0869-6632-2010-18-1-51-60
Literature

1. Афраймович В. С., Шильников Л. П. Инвариантные двумерные торы, их разрушение и стохастичность //Методы качественной теории диффернециальных уравнений. Горький: Изд-во Горьк. ун-та, 1983. С. 3.

2. Арнольд В. И., Афраймович В. С., Ильяшенко Ю. С., Шильников Л. П. Теория бифуркаций //Современные проблемы математики: фундаментальные направления /Под ред. В. И. Арнольда. М.: ВИНИТИ, 1986.

3. Anishchenko V. S., Astakhov V. V., Neiman A. B., Vadivasova T. E., Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Berlin: Springer, 2007.

4. Maistrenko V., Maistrenko Yu., Mosekilde E. Torus breakdown in noninvertible maps // Phys. Rev. E. 2003. Vol. 67. P. 046215.

5. Frouzakis C. E., Kevrekidis I. G., Peckhman B. B. A route to computational chaos revisited: noninvertibility and breakup of an invariant circle // Physica D. 2003. Vol. 177. P. 101.

6. Zhusubaliyev Zh. T., Mosekilde E. Bifurcations and Chaos in Piecewise- Smooth Dynamical Systems. Singapore: World Scientific, 2003.

7. Zhusubaliyev Zh. T., Mosekilde E., De S., Banerjee S. Transition from phase-locked dynamics to chaos in a piecewise-linear map // Phys. Rev. E. 2008. Vol. 77. P. 026206.

8. Lorenz E. N. Computational chaos – a prelude to computational instability // Physica D. 1989. Vol. 35. P. 299.

9. Krauskopf B., Osinga H. M., Peckham B. B. Unfolding the cusp-cusp bifurcation of planar endomorphisms // SIAM J. Applied Dynamical Systems. 2007. Vol. 6(2). P. 403.

10. England J. P., Krauskof B., Osinga H. M. Bifurcations of stable sets in noninvertible planar maps // Int. J. Bifurcat. Chaos. 2005. Vol. 15. P. 891.

11. Zhusubaliyev Zh. T., Mosekilde E. Birth of bilayered torus and torus breakdown in a piecewise-smooth dynamical system // Phys. Lett. A. 2006. Vol. 351. P. 167.

12. Zhusubaliyev Zh. T., Mosekilde E. Formation and destruction of multilayered tori in coupled map systems // Chaos. 2008. Vol. 18. P. 037124.

13. Zhusubaliyev Zh. T., Mosekilde E. Multilayered tori in a system of two coupled logistic maps // Phys. Lett. A. 2009. Vol. 373. P. 946.

14. Zhusubaliyev Zh. T., Mosekilde E. Novel routes to chaos through torus breakdown in noninvertible maps // Physica D. 2009. Vol. 283. P. 589.

15. Mira C., Gardini L., Barugols A., Cathala J. C. Chaotic Dynamics in Two-Dimensional Noninvertible Maps. Singapore: World Scientific, 1996.

16. Frouzakis C. E., Gardini L., Kevrekidis I. G., Millerioux G., Mira C. On some properties of invariant sets of two-dimensional noninvertible maps // Int. J. Bifurcat. Chaos. 1997. Vol. 7. P. 1167.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Жусубалиев -IzvVUZ_AND-18-1-51,
author = {Z. Т. Zhusubaliyev and О. О. Yanochkina},
title = {FORMATION AND BREAKDOWN OF A MULTILAYERED CLOSED CURVE IN NONINVERTIBLE MAPS},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/formation-and-breakdown-of-multilayered-closed-curve-in-noninvertible-maps},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-1-51-60},pages = {51--60},issn = {0869-6632},
keywords = {Two­dimensional endomorphisms,multilayered closed invariant curve,quasi­periodic dynamics.},
abstract = {The paper describes the mechanism for the formation of closed invariant curves that are formed as layered structures of several sets of interlacing manifolds each with their associated stable or unstable resonance modes. Such invariant curves can arise, for instance, if the saddle cycle on a «simple resonance curves» undergoes period­doubling or pitchfork bifurcations transversely to the circumference of the closed curve. }}