HYPERCHAOS IN MODEL NONAUTONOMOUS SYSTEM WITH A CASCADE EXCITATION TRANSMISSION THROUGH THE SPECTRUM


Cite this article as:

Kuznetsov S. P., Sokha Y. I. HYPERCHAOS IN MODEL NONAUTONOMOUS SYSTEM WITH A CASCADE EXCITATION TRANSMISSION THROUGH THE SPECTRUM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 24-32. DOI: https://doi.org/10.18500/0869-6632-2010-18-3-24-32


One of the key turbulence theory idea is a cascade energy transmission through the spectrum from large to small scales. It appears that this idea could be used for complex dynamics realization in a different­nature systems even when equations are knowingly differ from hydrodynamical. The system of four van der Pol oscillators is considered in this paper. Chaos generation is realized by cascade excitation transmission from one oscillator to another with frequency doubling. Due to slow forced modulation of the parameters responsible for the self­excitation two pair of oscillators become active turn by turn. In the beginning of each new active stage the excitation of oscillators from second to fourth are stimulated by oscillators with the half frequencies through quadratic nonlinear element. Excitation from the last oscillator to the first one is transmitted by the signal accepted via quadratic nonlinearity in the presence of auxiliary harmonic signal. In accordance with the results of numeric investigation the two positive Lyapunov exponents hyperchaos mode takes place.

DOI: 
10.18500/0869-6632-2010-18-3-24-32
Literature

1. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.

2. Монин А.С., Яглом А.М. Статистическая гидромеханика. Ч. 1. М.: Наука, 1965. 640 с. Ч. 2. М.: Наука, 1967. 720с.

3. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale–Williams type // Phys. Rev. Lett. 2005. Vol. 95. 144101.

4. Кузнецов C.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла–Вильямса // ЖЭТФ. 2006. Vol. 129, No 2. C. 400.

5. Кузнецов С.П., Сатаев И.Р. Проверка условий гиперболичности хаотического аттрактора в системе связанных неавтономных осцилляторов ван дер Поля // Известия вузов. Прикладная нелинейная динамика. 2006. Т. 14, No 5. P. 3.

6. Isaeva O.B., Jalnine A.Yu. and Kuznetsov S.P. Arnold’s cat map dynamics in a system of coupled nonautonomous van der Pol oscillators // Phys. Rev. E. 2006. Vol. 74, 046207.

7. Kuznetsov S.P. and Pikovsky A. Autonomous coupled oscillators with hyperbolic strange attractors // Physica D. 2007. Vol. 232. P. 87.

8. Кузнецов C.П. О реализации некоторых классических моделей и феноменов нелинейной динамики на основе связанных неавтономных осцилляторов // В кн.: Нeлинейные волны’ 2006 / Отв. ред. А.В. Гапонов-Грехов, В.И. Некоркин. Нижний Новгород: ИПФ РАН, 2007. С. 68.

9. Кузнецов А.П., Кузнецов С.П., Пиковский А.С., Тюрюкина Л.В. Хаотическая динамика в системах связанных неавтономных осцилляторов с резонансным и нерезонансным механизмом передачи возбуждения // Известия вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 6. C. 75.

10. Жалнин А.Ю., Кузнецов C.П. О возможности реализации в физической системе странного нехаотического аттрактора Ханта и Отта // ЖТФ. 2007. Т. 77, No 4. C. 10.

11. Кузнецов С.П., Исаева О.Б., Осбалдестин А. Феномены комплексной аналитической динамики в системе связанных неавтономных осцилляторов с поочередным возбуждением // Письма в ЖТФ. 2007. Т. 33, вып. 17. C. 69.

12. Rossler O.E.  ̈ An equation for hyperchaos // Phys. Lett. A. 1979. Vol. 71, No 2–3. С. 155.

13. Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part I: Theory. Part II: Numerical application // Meccanica. 1980. Vol. 15. P. 9.

14. Kaplan J.L. and Yorke J.A. Lecture Notes in Mathematics 730 (Springer-Verlag, Berlin 1979). P. 204.

15. Свешников А.А. Прикладные методы теории случайных функций. М.: Наука. Главная редакция Физико-математической литературы, 1968. 464 с.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Кузнецов-IzvVUZ_AND-18-3-24,
author = {Sergey P. Kuznetsov and Y. I. Sokha },
title = {HYPERCHAOS IN MODEL NONAUTONOMOUS SYSTEM WITH A CASCADE EXCITATION TRANSMISSION THROUGH THE SPECTRUM},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/hyperchaos-in-model-nonautonomous-system-with-cascade-excitation-transmission-through-the},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-3-24-32},pages = {24--32},issn = {0869-6632},
keywords = {Hyperchaos,coupled oscillator,Lyapunov exponents.},
abstract = {One of the key turbulence theory idea is a cascade energy transmission through the spectrum from large to small scales. It appears that this idea could be used for complex dynamics realization in a different­nature systems even when equations are knowingly differ from hydrodynamical. The system of four van der Pol oscillators is considered in this paper. Chaos generation is realized by cascade excitation transmission from one oscillator to another with frequency doubling. Due to slow forced modulation of the parameters responsible for the self­excitation two pair of oscillators become active turn by turn. In the beginning of each new active stage the excitation of oscillators from second to fourth are stimulated by oscillators with the half frequencies through quadratic nonlinear element. Excitation from the last oscillator to the first one is transmitted by the signal accepted via quadratic nonlinearity in the presence of auxiliary harmonic signal. In accordance with the results of numeric investigation the two positive Lyapunov exponents hyperchaos mode takes place. }}