CHARACTERISTICS OF GAP DISCRETE BREATHERS IN CRYSTALS WITH NaCl STRUCTURE


Cite this article as:

Khadeeva L. Z., Dmitriev S. V. CHARACTERISTICS OF GAP DISCRETE BREATHERS IN CRYSTALS WITH NaCl STRUCTURE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 6, pp. 85-92. DOI: https://doi.org/10.18500/0869-6632-2010-18-6-85-92


Molecular dynamics method is used to study the effect of mass ratio of anions and cations on the phonon spectra of the crystal with NaCl structure and on the discrete breathers existence  conditions and properties of gap discrete breathers. We show that discrete breathers can be easily excited for the mass ratio less than 0.2, when the gap in the phonon spectrum is wide enough to support them. When the mass ratio is equal to 0.1 we could find at least three types of stable discrete breathers, differed by the number of large amplitude atoms and by polarization of oscillation.

DOI: 
10.18500/0869-6632-2010-18-6-85-92
Literature

1. Sievers A.J. and Takeno S. Intrinsic localized modes in anharmonic crystals // Phys. Rev. Lett. 1988. Vol. 61. P. 970.

2. Flach S. and Willis C.R. Discrete Breathers // Phys. Rep. 1998. Vol. 295. P. 181.

3. Flach S. and Gorbach A.V. Discrete breathers – Advances in theory and applications // Phys. Rep. 2008. Vol. 467. P. 1.

4. Campbell D.K., Flach S., and Kivshar Yu.S. Localizing energy through nonlinearity and discreteness // Physics Today. 2004. Vol. 57. P. 43.

5. Manley M.E., Sievers A.J., Lynn J.W., Kiselev S.A., Agladze N.I., Chen Y., Llobet A., and Alatas A. Intrinsic localized modes observed in the high-temperature vibrational spectrum of NaI // Phys. Rev. B. 2009. Vol. 79. 134304.

6. Kiselev S.A., Sievers A.J. Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals // Phys. Rev. B. 1997. Vol. 55. 5755.

7. Gorbach A.V. and Johansson M. Discrete gap breathers in a diatomic Klein–Gordon chain: Stability and mobility // Phys. Rev. E. 2003. Vol. 67. 066608.

8. James G. and Kastner M. Bifurcations of discrete breathers in a diatomic Fermi–Pasta–Ulam chain // Nonlinearity. 2007. Vol. 20. 631.

9. Dmitriev S.V., Medvedev N.N., Mulyukov R.R., Pozhidaeva O.V., Potekaev A.I., and Starostenkov M.D. Localized vibrational modes in an A3B two-dimensional perfect crystal // Russian Physics Journal. 2008. Vol. 51. 858.

10. Dmitriev S.V., Sukhorukov A.A., Pshenichnyuk A.I., Khadeeva L.Z., Iskandarov A.M., and Kivshar Yu.S. Anti-FPU energy recursion in diatomic lattices at low energy densities // Phys. Rev. B. 2009. Vol. 80. 094302.

11. Manley M.E. Intrinsic localized lattice modes and thermal transport: Potential application in a thermal rectifier. arXiv:0905.2988.

12. Tharmalingam K. Calculation of energy of formation of vacancy pairs in alkali halides // J. Phys. C. 1970. Vol. 3. 1856.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Хадеева -IzvVUZ_AND-18-6-85,
author = {L. Z. Khadeeva and S. V. Dmitriev},
title = {CHARACTERISTICS OF GAP DISCRETE BREATHERS IN CRYSTALS WITH NaCl STRUCTURE},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/characteristics-of-gap-discrete-breathers-in-crystals-with-nacl-structure},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-6-85-92},pages = {85--92},issn = {0869-6632},
keywords = {Nonlinear lattice dynamics,energy localization,discrete breather,ionic crystal,phonon spectrum.},
abstract = {Molecular dynamics method is used to study the effect of mass ratio of anions and cations on the phonon spectra of the crystal with NaCl structure and on the discrete breathers existence  conditions and properties of gap discrete breathers. We show that discrete breathers can be easily excited for the mass ratio less than 0.2, when the gap in the phonon spectrum is wide enough to support them. When the mass ratio is equal to 0.1 we could find at least three types of stable discrete breathers, differed by the number of large amplitude atoms and by polarization of oscillation. }}