STOCHASTIC BIFURCATIONS
Cite this article as:
Vadivasova Т. Е., Anishenko V. S. STOCHASTIC BIFURCATIONS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 5, pp. 3-16. DOI: https://doi.org/10.18500/0869-6632-2009-17-5-3-16
The modern knowledges of bifurcations of dynamical systems in the presence of noise are presenred. The main definitions are given and certain typical examples of the bifurcations in the presence of additive and multiplicative noise are considered.
1. Арнольд В.И., Афраймович В.С., Ильяшенко Ю.С., Шильников Л.П. Теория бифуркаций // Динамические системы -5. М.: ВИНИТИ. 1986. С. 5. (Итоги науки и техн.). (Сов. пробл. мат. Фунд. направл.).
2. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва-Ижевск: Институт комп. иссл., 2003.
3. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Наука, 1981.
4. Хорстнемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.
5. Arnold L. Random dynamical systems. Chapter 9. Bifurcation theory. Spriger, 2003.
6. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.
7. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise // Phys. Rev. F. 1987. Vol. 36. P. 834.
8. Sri Namachshivaya N. Stochastic bifurcation// Appl. Math. and Computation. 1990. Vol. 38. P. 101.
9. Arnold L., Sri Namachshivaya N., Schenk-Yoppe’ K.R. Toward an understanding of stochastic Hopf bifurcation: a base study // Int. J. Bifurcation and Chaos. 1996. Vol. 6. P. 1947.
10. Schenk-Yoppe’ K.R. Bifurcation scenarious of the noisy Duffing–van der Pol oscillator // Nonlinear Dynamics. 1996. Vol. 11. P. 255.
11. Olarrea J., de la Rubia F.J. Stochastic Hopf bifurcation: The effect of colored noise on the bifurcational interval // Phys. Rev. E. 1996. Vol. 53(1). P. 268.
12. Landa P.S., Zaikin A.A. Noise-induced phase transitions in a pendulum with a randomly vibrating suspension axis // Phys. Rev.E. 1996. Vol. 54(4). P. 3535.
13. Crauel H., Flandol F. Additive noise destroys a pitchfork bifurcation // Journal of Dynamics and Differential Equations. 1998. Vol. 10. P. 259.
14. Leung H.K. Stochastic Hopf bifurcation in a based van der Pol model // Physica A. 1998. Vol. 254(1). P. 146.
15. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances // Chaos, Solitons, and Fractals. 2009. Vol. 39. P. 7.
16. Ebeling W., Herzel H., Richert W., Schimansky-Geier L. Influence of noise on Duffing–van der Pol oscillator // Zeitschrift f. Angew. Math. und Mechanik. 1986. Vol. 66. P. 141.
17. Schimansky-Geier L., Herzel H. Positive Lyapunov exponents in the Kramers oscillator // J. of Stat. Physics. 1993. Vol. 70. P. 141.
18. Matsumoto K., Tsuda I. Noise-induced order // J. Stat. Phys. 1983.Vol. 31(1). P. 87.
19. Hramov A.E., Koronovskii A.A., Moskalenko O.I. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? // Phys. Lett. A. 2006. Vol. 354(5-6). P. 423.
20. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. М.: Сов. радио, 1961.
21. Малахов А.Н. Флуктуации в автоколебательных системах. М.: Наука, 1968.
22. Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance // J. Phys. A: Math. Gen. 1981. Vol. 14. P. L453.
23. Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S. Stochastic resonance in bistable systems // Phys. Rev. Lett. 1989. Vol. 62. P. 349.
24. Pikovsky A., Kurths J. Coherence resonance in a noisy driven excitable system // Phys. Rev. Lett. 1997. Vol. 78. P. 775.
25. Linder B., Schimansky-Geier L. Analitical approach to the stochastic FizHugh–Nagumo system and coherence resonance // Phys. Rev. E. 1999. Vol. 60(6). P. 7270.
26. Shulgin B., Neiman A., Anishchenko V. Mean switching frequency locking in stochastic bistable system driven by a periodic force // Phys. Rev. Lett. 1995. Vol. 75(23). P. 4157.
27. Anishchenko V., Neiman B. Stochastic synchronization // Stochastic Dynamics / Eds. L. Schimansky-Geier and T. Poschel. Berlin: Springer, 1997. P. 155. ̈
BibTeX
author = {Т. Е. Vadivasova and Vadim S. Anishenko},
title = {STOCHASTIC BIFURCATIONS},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/stochastic-bifurcations},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-5-3-16},pages = {3--16},issn = {0869-6632},
keywords = {stochastic bifurcation,Pbifurcation,Dbifurcation,noise induced transition.},
abstract = {The modern knowledges of bifurcations of dynamical systems in the presence of noise are presenred. The main definitions are given and certain typical examples of the bifurcations in the presence of additive and multiplicative noise are considered. }}