DESIGN OF W-BAND 5–10 MW OUTPUT POWER RELATIVISTIC GYROTRON


Cite this article as:

Abubakirov E. B., Guznov . ., Denisov G. G., Zapevalov V. ., Zavolsky N. ., Zapevalov . A., Plankin O. P., Rozental R. M., Sedov . S., Semenov E. S., Chirkov A. V., Shevchenko A. . DESIGN OF W-BAND 5–10 MW OUTPUT POWER RELATIVISTIC GYROTRON. Izvestiya VUZ. Applied Nonlinear Dynamics, , vol. , iss. , pp. 94-?.


The 3-mm band relativistic gyrotron excited by 250 keV electron beam with record output parameters (power 5–10 MW, efficiency 35–40%, microwave pulse duration 0.5–1 μs) was developed. The main design solutions of components, such as the electron-optical system forming helical electron beam, the interaction space and the electrodynamic system of microwave output, are presented.

 
 
Literature

1. Tantawi S.G. Advanced high frequency acceleration // IEEE International Vacuum Electronics Conference. Monterey, CA, 22–24 April 2014.

2. Fazio M.V., Tantawi S.G., Dolgashev V.A. Bridging the gap between conventional RF acceleration and laser driven acceleration // Proceedings of LINAC 2014. Geneva, Switzerland, 31 August–5 September 2014. P. 358.

3. Manheimer W.M., Mesyats G.A., Petelin M.I. Super-high-power microwave radars // Proceedings of the International «Workshop Strong Microwaves in Plasmas». Moscow–Nizhny Novgorod–Moscow, 15–22 August 1993. Vol.2. P. 632. http://www.ipfran.ru/biblio/smp2.html

4. Skolnik M. Role of radar in microwaves // IEEE Transactions on Microwave Theory and Techniques. 2002. Vol. 50, No 3. P. 625.

5. Reutova A.G., Ul’maskulov M.R., Sharypov A.K., Shpak V.G., Shunailov S.A., Yalandin M.I., Belousov V.I., Ginzburg N.S., Denisov G.G., Zotova I.V., Rozental R.M., Sergeev A.S. Experimental observation of superradiance in the stimulated scattering of an intense microwave pump wave by a counterpropagating subnanosecond high-current relativistic electron bunch// JETP Letters. 2005. Vol. 82, Iss. 5. P. 263.

6. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V., Kulagin I.S., Lygin V.K., Manuilov V.N., Moiseev M.A. , Rosenthal R.M, Zapevalov V.E. , Zavolsky N.A. X-band, high-efficiency relativistic gyrotron // IEEE Trans. on Plasma Sci. 2002. Vol. 30, No 3. P. 840.

7. Zaitsev N.I., Zavolsky N.A., Zapevalov V.E., Ilyakov E.V., Kulagin I.S., Lygin V.K., Moiseev M.A., Nechaev V.E., Petelin M.I., Rozental R.M. Ten-megawatt pulsed gyrotron with a 1-cm wavelength and a 50% efficiency // Radiophysics and Quantum Electronics. 2003. Vol. 46, Iss. 10. P. 816.

8. Zapevalov V.E. The gyrotron: Constraints on output-power and efficiency increase// Radiophysics and Quantum Electronics. 2006. Vol. 49, Iss. 10. P. 779.

9. Tsimring Sh.E. Electron Beams and Microwave Vacuum Electronics. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.

10. Rzesnicki T., Piosczyk B., Kern S., Illy S., Jianbo J., Samartsev A., Schlaich A., Thumm M. 2.2-MW record power of the 170-GHz European preprototype coaxial-cavity gyrotron for ITER // IEEE Transactions on Plasma Science. 2010. Vol. 38, No 6. P. 1141.

11. Thumm M. Recent advances in the worldwide fusion gyrotron development // IEEE Transactions on Plasma Science. 2014. Vol. 42, No3. P. 590.

12. Moiseev M.A., Nusinovich G.S. Some results of numerical study of gyrotron equations / Gyrotrons. Gorky: Institute of Applied Physics, 1981. P. 41 (in Russian). http://www.ipfran.ru/biblio/g1.html

13. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. Theory of non-stationary processes in gyrotrons with low Q resonators // International Journal of Electronics. 1986. 61:6. 881.

14. Bratman V.L., Ginzburg N.S., Nusinovich G.S., Petelin M.I., Strelkov P.S. Relativistic gyrotrons and cyclotron autoresonance masers // Int. J. Electronics. 1981. Vol. 51, No 4. P. 541.

15. Zavolsky N.A., Zapevalov V.E., Moiseev M.A. Efficiency enhancement of the relativistic gyrotron // Radiophysics and Quantum Electronics. 2001. Vol. 44, Iss. 4. P. 318.

16. Zaitsev N.I., Zapevalov S.A., Ilyakov E.V., Kornishin S.Yu., Kofanov S.V., Kryltsov M.Yu., Kulagin I.S., Lygin V.K., Malygin A.V., Manuilov V.N., Movshevich B.Z., Perminov V.G., Petelin M.I., Fiks A.Sh., Shevchenko A.S., Tsalolikhin V.I., Kladukhin V.V., Krasnykh A. 500 keV, 200A microsecond electron accelerator with a repetition rate of 10 Hz // Proceedings of XXI Russian Accelerator Conference. Zvenigorod, 2008. P. 339.

17. Zaitsev N.I., Gvozdev A.K., Zapevalov S.A., Kuzikov S.V., Manuilov V.N., Moiseev M.A., Plotkin M.E. Experimental study of a multimegawatt pulsed gyroklystron // Journal of Communications Technology and Electronics. 2014. Vol. 59, Iss. 2. P. 16.

18. Plankin O.P., Semenov V.E. ANGEL 2DS Program Package for Gyrotron Gun Modeling: User’s Guide. Nizhny Novgorod: IAP RAS, 2011 (in Russian).

19. Plankin O.P., Semenov V.E. Trajectory analysis of the electronic-optical system of technological gyrotron // Vestnik NSU. Series: Physics. 2013. Vol. 8, Iss.2. P. 44 (in Russian).

20. Belousov V.I., Bogdashov A.A., Denisov G.G., Kurbatov V.I., Malygin V.I., Malygin S.A., Orlov V.B., Popov L.G., Solujanova E.A., Tai E.M., Usachov S.V. The test results of the 84 GHz/200 kW/CW gyrotron // 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating. Nizhny Novgorod, Russia, May 17–20, 2004.

21. Tsymring Sh.E. Axially symmetric waveguide tapers and transformers // in: Gyrotrons. Gorky: Institute of Applied Physics, 1989. P. 113 (in Russian). http://www.ipfran.ru/biblio/gir.html

22. Gvozdev A.K., Zharova N.A., Zaitsev N.I., Semenov V.E., Sorokin A.A. Development of a multipactor discharge in the output channel of a powerful pulsed gyroklystron // Technical Physics. 2012. Vol. 57, Iss.10. P. 1394.

23. Chirkov A.V., Denisov G.G., Kuftin A.N., Zapevalov V.E., Malygin V.I., Moiseev M.A., Kornishin S.Yu. // Technical Physics Letters. 2007. Vol. 33, Iss. 4. P. 350.

24. Litvak A.G., Denisov G.G., Myasnikov V.E., Tai E.M., Azizov E.A., Ilin V.I. Development in Russia of megawatt power gyrotrons for fusion // Journal of Infrared, Millimeter and Terahertz Waves. 2011. Vol. 32. P.337.

25. Thumm M. State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Update 2012). Karlsruhe: KIT Scientific Publishing, 2013.

26. Zaitsev N.I., Ilyakov E.V., Kuzikov S.V., Kulagin I.S., Lygin V.K., Moiseev M.A., Petelin M.I., Shevchenko A.S. Pulsed high-order volume mode gyroklystron // Radiophysics and Quantum Electronics. 2005. Vol. 48, Iss. 10–11. P. 737.

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Абубакиров -IzvVUZ_AND---94,
author = {E. B. Abubakirov and Yu. M. Guznov and G. G. Denisov and V. E. Zapevalov and N. A. Zavolsky and S. A. Zapevalov and O. P. Plankin and R. M. Rozental and A. S. Sedov and E. S. Semenov and A. V. Chirkov and A. S. Shevchenko},
title = {DESIGN OF W-BAND 5–10 MW OUTPUT POWER RELATIVISTIC GYROTRON},
year = {},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {},number = {},
url = {https://old-andjournal.sgu.ru/en/articles/design-of-w-band-5-10-mw-output-power-relativistic-gyrotron},
address = {Саратов},
language = {russian},
doi = {?},pages = {94--?},issn = {0869-6632},
keywords = {Relativistic gyrotron,millimeter wave radiation.},
abstract = {The 3-mm band relativistic gyrotron excited by 250 keV electron beam with record output parameters (power 5–10 MW, efficiency 35–40%, microwave pulse duration 0.5–1 μs) was developed. The main design solutions of components, such as the electron-optical system forming helical electron beam, the interaction space and the electrodynamic system of microwave output, are presented.     }}