DYNAMICS OF RENAL BLOOD FLOW AT MICRO- AND MACROSCOPIC LEVELS
Cite this article as:
Pavlov A. N., Sosnovtseva O. V., Anisimov А. А., Pavlova O. N. DYNAMICS OF RENAL BLOOD FLOW AT MICRO- AND MACROSCOPIC LEVELS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 1, pp. 3-18. DOI: https://doi.org/10.18500/0869-6632-2008-16-1-3-18
Changes in the dynamics of renal blood flow at the transition from the microscopic level of individual nephrons to the macroscopic level of the whole kidney are investigated. Rhythmic processes caused by the auto-regulatory mechanisms and their interactions in the form of synchronization and modulation are analyzed. Distinctions of the dynamics in the cases of normal and increased arterial pressure are discussed.
1. Yip K.-P., Holstein-Rathlou N.-H. and Marsh D.J. Mechanisms of temporal variation in single-nephron blood flow in rats // Am. J. Physiol. 1993. Vol. 264. P. F427.
2. Daniels F.H., Arendshorst W.J., Roberds R.G. Tubuloglomerular feedback and autoregulation in spontaneously hypertensive rats//Am. J. Physiol. 1990. Vol.258. P.F1479.
3. Moore L.C. Tubuloglomerular feedback and SNGFR autoregulation in the rat // Am. J. Physiol. 1984. Vol. 247. P. F267.
4. Leyssac P.P. and Baumbach L. An oscillating intratubular pressure response to alterations in Henle loop flow in the rat kidney // Acta Physiol. Scand. 1983. Vol. 117. P. 415.
5. Leyssac P.P. and Holstein-Rathlou N.-H. Effects of various transport inhibitors on oscillating TGF pressure responses in the rat // Pfluegers Arch. 1986. Vol. 407. P. 285.
6. Holstein-Rathlou N.-H. and Leyssac P.P. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats // Acta Physiol. Scand. 1986. Vol. 126. P. 333.
7. Holstein-Rathlou N.-H. and Marsh D.J. Oscillations of tubular pressure, flow, and distal chloride concentration in rats // Am. J. Physiol. 1989. Vol. 256. P. F1007.
8. Jensen K.S, Mosekilde E. and Holstein-Rathlou N.-H. Self-sustained oscillations and chaotic behavior in kidney pressure regulation // Mondes en Developement. 1986. Vol. 54/55. P. 91.
9. Yip K.-P., Holstein-Rathlou N.-H. and Marsh D.J. Chaos in blood flow control in genetic and renovascular hypertensive rats // Am. J. Physiol. 1991. Vol. 261. P. F400.
10. Peng H., Matchkov V., Ivarsen A., Aalkjaer C., Nilsson H. Hypothesis for the initiation of vasomotion // Circ. Res. 2001. Vol. 88. P. 810.
11. Lamboley M., Schuster A., Beny J.L., Meister J.J. ́ Recruitment of smooth muscle cells and arterial vasomotion // Am. J. Physiol. 2003. Vol. 285. P. H1156.
12. Savineau J.P. and Marthan R. Cytosolic calcium oscillations in smooth muscle cells // News Physiol. Sci. 2000. Vol. 15. P. 50.
13. Chon K.H., Chen Y.M., Marmarelis V.Z., Marsh D.J. and Holstein-Rathlou N.-H. Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis // Am. J. Physiol. 1994. Vol. 267. P. F160.
14. Leyssac P.P. and Holstein-Rathlou N.-H. Tubulo-glomerular feedback response: enhancement in adult spontaneously hypertensive rats and effects of anaesthetics // Pfluegers Arch. 1989. Vol. 413. P. 267.
15. Holstein-Rathlou N.-H. and Marsh D.J. A dynamic model of the tubuloglomerular feedback mechanism // Am. J. Physiol. 1990. Vol. 258. P. F1448.
16. Layton H.E., Pitman E.B. and Moore L.C. Limit-cycle oscillations and tubuloglomerular feedback regulation of distal sodium delivery // Am. J. Physiol. 2000. Vol. 278. P. F287.
17. Sakai T., Hallman E. and Marsh D.J. Frequency domain analysis of renal autoregulation in the rat // Am. J. Physiol. 1986. Vol. 250. P. F364.
18. Holstein-Rathlou N.-H., Wagner A.J. and Marsh D.J. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats // Am. J. Physiol. 1991. Vol. 260. P. F53.
19. Sosnovtseva O.V., Pavlov A.N., Mosekilde E. and Holstein-Rathlou N.-H. Bimodal oscillations in nephron autoregulation // Phys. Rev. E. 2002. Vol. 66. P. 061909.
20. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H. and Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // Am. J. Physiol. 2007. Vol. 293. P. F1545.
21. Shi Y., Wang X., Chon K.H. and Cupples W.A. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide // Am. J. Physiol. 2006. Vol. 290. P. R982.
22. Добеши И. Десять лекций по вейвлетам. М.;Ижевск: Регулярная и хаотическая динамика, 2001.
23. Малла С. Вэйвлеты в обработке сигналов. М.: Мир, 2005.
24. Короновский А., Храмов А. Непрерывный вейвлетный анализ. Саратов: Изд-во ГосУНЦ «Колледж», 2002.
25. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H. and Marsh D.J. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation // Phys. Rev. E. 2004. Vol. 70. P. 031915.
26. Sosnovtseva O.V., Pavlov A.N., Brazhe N.A., Brazhe A.R., Erokhova L.A., Maksimov G.V., Mosekilde E. Interference microscopy under double-wavelet analysis: A new tool to studying cell dynamics // Phys. Rev. Lett. 2005. Vol. 94. P. 218103.
27. Marsh D.J., Sosnovtseva O.V., Pavlov A.N., Yip K.-P. and Holstein-Rathlou N.-H. Frequency encoding in renal blood flow regulation // Am. J. Physiol. 2005. Vol. 288. P. R1160.
28. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H. and Marsh D.J. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics // Physiol. Meas. 2005. Vol. 26. P. 351.
29. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of wavelet-based tools to study the dynamics of biological processes // Briefings in Bioinformatics. 2006. Vol. 7. P. 375.
30. Kuramoto Y. and Nakao H. Scaling properties in large assemblies of simple dynamical units driven by long-wave random forcing // Phys. Rev. Lett. 1997. Vol. 78. P. 4039.
31. De Monte S., d’Ovidio F., Chate H. and Mosekilde E. ́ Effects of microscopic disorder on the collective dynamics of globally coupled maps // Physica D. 2005. Vol. 205. P. 25.
32. Holden A.V., Aslanidi O.V., Benson A.P., Clayton R.H., Halley G., Li P. and Tong W.C. The virtual ventricular wall: A tool for exploring cardiac propagation and arrhythmogenesis // J. Biol. Phys. 2006. Vol. 32. P. 355.
33. Pikovsky A., Rosenblum M. and Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge, UK: Cambridge University Press, 2001.
34. Glass L. and Mackey MC. From Clocks to Chaos: The Rhythms of Life. New Jersey, Princeton University Press, 1988.
35. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex. Springer: Berlin, Heidelberg, 2007.
36. Tass P., Rosenblum M.G., Weule J., Kurths J., Pikovsky A., Volkmann J., Schnitzler A. and Freund H.J. Detection of n : m phase locking from noisy data: application to magnetoencephalography // Phys. Rev. Lett. 1998. Vol. 81. P. 3291.
37. Анищенко В.С., Вадивасова Т.Е., Астахов В.В. Нелинейная динамика хаотических и стохастических систем. Саратов: Изд-во Сарат. ун-та, 1999.
38. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. М.; Ижевск: Регулярная и хаотическая динамика, 2003.
BibTeX
author = {A. N. Pavlov and O. V. Sosnovtseva and А. А. Anisimov and O. N. Pavlova },
title = {DYNAMICS OF RENAL BLOOD FLOW AT MICRO- AND MACROSCOPIC LEVELS},
year = {2008},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {16},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/dynamics-of-renal-blood-flow-at-micro-and-macroscopic-levels},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2008-16-1-3-18},pages = {3--18},issn = {0869-6632},
keywords = {-},
abstract = {Changes in the dynamics of renal blood flow at the transition from the microscopic level of individual nephrons to the macroscopic level of the whole kidney are investigated. Rhythmic processes caused by the auto-regulatory mechanisms and their interactions in the form of synchronization and modulation are analyzed. Distinctions of the dynamics in the cases of normal and increased arterial pressure are discussed. }}