EXPERIMENTAL REALIZATION OF LORENZ MODEL OF LIQUID’S CONVECTIVE INSTABILITY IN VERTICAL TOROIDAL LOOP
Cite this article as:
Brazhe R. А., Kudelin О. N. EXPERIMENTAL REALIZATION OF LORENZ MODEL OF LIQUID’S CONVECTIVE INSTABILITY IN VERTICAL TOROIDAL LOOP. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 88-99. DOI: https://doi.org/10.18500/0869-6632-2006-14-6-88-99
Stable and unstable regimes of glycerine convection in vertical toroidal loop are investigated experimentally. The results of Fourier-analysis, DFA, wavelet-, and correlation analysis of liquid’s motion peculiarities are presented. Chaotic attractor with Lorenz-attractor signs is constructed.
1. Lorenz E.N. Deterministic nonperiodic flow // J. Atmos. Sci. 1963. Vol. 20, No 2. P. 130.
2. Welander P. On the oscillatory instability of a differentially heated loop // J. Fluid Mech. 1967. Vol. 29, Pt 1. P. 17.
3. Creveling H.F. et al. Stability characteristics of a single-phase free convection loop // J. Fluid Mech. 1975. Vol. 67, Pt 1. P. 65.
4. Gorman M., Widman P.J., Robins K.A. Chaotic flow regimes in a convective loop // Phys. Rev. Lett. 1984. Vol. 52, No 25. P. 2241.
5. Wang Y., Singer I., Bau H. Controlling chaos in thermal convecting loop // J. Fluid Mech. 1992. Vol. 237. P. 479.
6. Дроздов С.М. Экспериментальное исследование конвекции жидкости в замкнутом тороидальном канале // Изв. РАН. МЖГ. 1995, No 4. С. 20.
7. Дроздов С.М. Моделирование возникновения нестационарности и хаоса в гидродинамической системе, управляемой небольшим числом степеней свободы // Изв. РАН. МЖГ. 2001, No 1. С. 31.
8. Шредер М. Фракталы, хаос, степенные шумы. Миниатюры из бесконечного рая. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001.
9. Peng C.-K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides // Phys. Rev. E. 1994. Vol. 49. P. 1685.
10. Peng C.-K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series // Chaos. 1995. Vol. 5. P. 82.
11. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // УФН. 1996. Т. 166, No 11. С. 1145.
12. Hamilton J.D. Time series analysis. Princeton University Press, 1994.
13. Box G.E.P., Jenkins G.M., Reinsel G.C. Time series analysis: Forecasting and control. Third edition. Prentice Hall, 1994.
BibTeX
author = {R. А. Brazhe and О. N. Kudelin},
title = {EXPERIMENTAL REALIZATION OF LORENZ MODEL OF LIQUID’S CONVECTIVE INSTABILITY IN VERTICAL TOROIDAL LOOP},
year = {2006},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {14},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/experimental-realization-of-lorenz-model-of-liquids-convective-instability-in-vertical},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-6-88-99},pages = {88--99},issn = {0869-6632},
keywords = {-},
abstract = {Stable and unstable regimes of glycerine convection in vertical toroidal loop are investigated experimentally. The results of Fourier-analysis, DFA, wavelet-, and correlation analysis of liquid’s motion peculiarities are presented. Chaotic attractor with Lorenz-attractor signs is constructed. }}