FIELD EMITTERS WITH FULLERENE COATINGS AND THEIR ACTIVATION
Cite this article as:
Tumareva T. A., Sominski G. G., Bondarenko А. К., Morozov . N., Svetlov I. А. FIELD EMITTERS WITH FULLERENE COATINGS AND THEIR ACTIVATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 3, pp. 51-69. DOI: https://doi.org/10.18500/0869-6632-2006-14-3-51-69
Methods of fullerene-coated tip field emitter creation were worked out and investigated. Basic rules and mechanisms of the microstructure origin on the fullerene surface during coverage formation and treatment (thermal and field) were determined. The emitters with fullerene coatings were made that secure stable currents from the single submicron tip up to 150 mA at static regime and up to 1.5–2 mA at pulsed one. Activation of the fullerene-coated field emitter by potassium atom and ion flows was studied. The rapid operating voltage increase immediately after the end of activation by potassium atoms was discovered and explained. It was shown that lasting operating voltage decrease up to two times is possible to reach treating the fullerene coating by the potassium ion flow. Obtained results attest that efficiency of the fullerene coating activation by the potassium ion flow may be connected with formation of endohedral ((K@C60) and/or exohedral (C60@K) molecules in the coverage.
1. Гуляев Ю.В., Григорьев Ю.А., Синицын Н.И. и др. // Материалы Всероссийской межвузовской конференции «Современные проблемы электроники и радиофизики СВЧ». Саратов: Изд. ГосУНЦ «Колледж», 1997. С. 90.
2. Шешин Е.П. Структура поверхности и автоэмиссионные свойства углеродных материалов. М.: Изд-во МФТИ Физматкнига, 2001. 287 с.
3. Бобков А.Ф., Давыдов Е.В., Зайцев С.В., Карпов А.В., Козодаев М.А., Николаева И.Н., Попов М.О., Скороходов Е.Н., Суворов А.П., Чеблуков Ю.Н. // ЖТФ. 2001. Т. 71. No 6. С. 95.
4. Елецкий А.В. // УФН. 2000. Т. 170. No 2. С. 113.
5. Yue G.Z., Qiu Q., Gao Bo, Cheng Y., Zhang J., Shimoda H., Chang S., Lu J.P., Zhou O. // Appl. Phys. Letters. 2002. Vol. 81. No 2. P. 355.
6. Fursey G.N., Novikov D.V., Dyuzhev G.A., Kotcheryzhenkov A.V., Vassiliev P.O. // Appl. Surf. Sci. 215(2003). P. 135.
7. Yoon Huh, Jeong Yong Lee, Cheol Jin Lee // Thin Solid Films. 475(2005). P. 267.
8. Milne W.I., Teo K.B.K., Amaratunga G.A.J., Legagneux P., Gangloff L., Shnell J.-P., Semet V., Thien Binh V, Groening O. // J. Mater. Chem. 2004. 14. P. 933.
9. Бочаров Г.С., Елецкий А.В. // ЖТФ. 2005. Т. 75. No 7. С. 126.
10. Tumareva T.A., Sominskii G.G. //Journal of Communications Technology and Electronics. 2000. Vol. 45. Suppl. 1. P. 110.
11. Тумарева Т.А., Соминский Г.Г., Ефремов А.А., Поляков А.С. // ЖТФ. 2002. Т. 72. No 2. С. 105.
12. Тумарева Т.А., Соминский Г.Г., Поляков А.С. // ЖТФ. 2002. Т. 72. No 2. С. 111.
13. Тумарева Т.А., Соминский Г.Г., Веселов А.А. // ЖТФ. 2004. Т. 74. No 7. С. 110.
14. Соминский Г.Г., Тумарева Т.А., Веселов А.А., Ефремов А.А. // В сб. XII зимняя школа-семинар по СВЧ электронике и радиофизике (Саратов, 28 января – 3 февраля 2003 г.). Материалы школы-семинара. Саратов: Изд. ГосУНЦ «Колледж», 2003. С. 31.
15. Логинов М.В., Шредник В.Н. // Письма в ЖТФ. 1998. Т. 24. No 11. С. 45.
16. Muller E.W. ̈ // Zs. Naturforsch. 1955. Vol. 27. P. 290.
17. Melmed A.J., Muller E.W. ̈ // Journal of Chem. Phys. 1958. Vol. 29. No 5. P. 1037.
18. Комар А.П., Комар А.А. // ЖТФ. 1961. Т. 31. No 2. С. 231.
19. Шишкин В.А. // Диссертация на соискание ученой степени кандидата физ.-мат. наук. Институт Электрохимии АН СССР (Москва). 1962.
BibTeX
author = {T. A. Tumareva and G. G. Sominski and А. К. Bondarenko and А. N. Morozov and I. А. Svetlov},
title = {FIELD EMITTERS WITH FULLERENE COATINGS AND THEIR ACTIVATION},
year = {2006},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {14},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/field-emitters-with-fullerene-coatings-and-their-activation},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-3-51-69},pages = {51--69},issn = {0869-6632},
keywords = {-},
abstract = {Methods of fullerene-coated tip field emitter creation were worked out and investigated. Basic rules and mechanisms of the microstructure origin on the fullerene surface during coverage formation and treatment (thermal and field) were determined. The emitters with fullerene coatings were made that secure stable currents from the single submicron tip up to 150 mA at static regime and up to 1.5–2 mA at pulsed one. Activation of the fullerene-coated field emitter by potassium atom and ion flows was studied. The rapid operating voltage increase immediately after the end of activation by potassium atoms was discovered and explained. It was shown that lasting operating voltage decrease up to two times is possible to reach treating the fullerene coating by the potassium ion flow. Obtained results attest that efficiency of the fullerene coating activation by the potassium ion flow may be connected with formation of endohedral ((K@C60) and/or exohedral (C60@K) molecules in the coverage. }}