ABOUT SCALING PROPERTIES IN THE NOISY CIRCLE MAP AT THE GOLDEN-MEAN WINDING NUMBER


Cite this article as:

Kuznetsov A. P., Kuznetsov S. P., Sedova Y. V. ABOUT SCALING PROPERTIES IN THE NOISY CIRCLE MAP AT THE GOLDEN-MEAN WINDING NUMBER. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 56-76. DOI: https://doi.org/10.18500/0869-6632-2005-13-5-56-76


Scaling regularities are examined associated with effect of additive noise upon a critical circle map at the golden-mean winding number. On a basis of the RG approach of Hamm and Graham [1] we present an improved numerical estimate for the scaling constant responsible for the effect of noise, g = 2:3061852653::: Decrease of the noise amplitude by this number ensures possibility of observation for one more level of fractal-like structure associated with increase of characteristic time scale by factor (p5 + 1)=2. Numeric results demonstrating evidence of the expected scaling are presented, e.g. portraits of the noisy attractors, devil’s staircase plots, and Lyapunov charts.

Key words: 
-
DOI: 
10.18500/0869-6632-2005-13-5-56-76
Literature

1. Hamm A., Graham R. Scaling for small random perturbations of golden critical circle maps // Phys. Rev. A. 1992. Vol. 46, No 10. P. 6323–6333.

2. Шустер Г. Детерминированный хаос. Введение. М.: Мир, 1988.

3. Кузнецов С.П. Динамический хаос. Курс лекций. М.: Физматлит, 2001.

4. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва–Ижевск: Институт компьютерных исследований, 2003.

5. Бутенин Н.В., Неймарк Ю.И., Фуфаев Н.Л. Введение в теорию нелинейных колебаний. М.: Наука, 1987.

6. Glass L., Sun J. Periodic forcing of a limit cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations // Phys. Rev. E. 1994. Vol. 50. P. 5077–5084.

7. Anishchenko V.S. Dynamical Chaos – Models and Experiments. Appearance, Routes and Structure of Chaos in Simple Dynamical Systems // World Scientific, Singapore, 1995.

8. Bak P., Bohr T., Jensen M.H., Christiansen P.V. Josephson junctions and circle maps // Solid State Communications. 1984. Vol. 51, No 4. P. 231–234.

9. Bohr T., Bak P., Jensen M.H. Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps // Phys. Rev. A. 1984. Vol. 30, No 4. P. 1970–1981.

10. Alstrøm P., Christiansen B., Hyldgaard P., Levinsen M.T., Rasmussen R. Scaling relations at the critical line and the period-doubling route for the sine map and the driven damped pendulum // Phys. Rev. A. 1986. Vol. 34, No 3. P. 2220–2233.

11. Arnold V.I. Cardiac arrhythmias and circle mappings // Chaos. 1991. Vol. 1, No 1. P. 20–24.

12. Glass L., Guevara M.R., Shrier A., Perez R. Bifurcation and chaos in a periodically stimulated cardiac oscillator // Physica D. 1983. Vol. 7. P. 89–101.

13. Feigenbaum M.J., Kadanoff L.P., Shenker S.J. Quasiperiodicity in dissipative systems: A renormalization group analysis // Physica D. 1982. Vol. 5. P. 370–386.

14. Ostlund S., Rand D., Sethna J., Siggia E.D. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems // Physica D. 1983. Vol. 8. P. 303–342.

15. Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. 1978. Vol. 19, No 1. P. 25–52.

16. Feigenbaum M.J. The universal metric properties of nonlinear transformations // J. Stat. Phys. 1979. Vol. 21, No 6. P. 669–706.

17. Feigenbaum M.J. Universal behavior in nonlinear systems // Physica D. 1983. Vol. 7, No 1-3. P. 16–39.

18. Greene J.M., MacKay R.S., Vivaldi F., Feigenbaum M.J. Universal behaviour in families of area-preserving maps // Physica D. 1981. Vol. 3, No 3. P. 468–486.

19. Вул Е.Б., Синай Я.Г., Ханин К.М. Универсальность Фейгенбаума и термодинамический формализм // УМН. 1984. Т. 39, No 3. C. 3–37.

20. Mao J.-M., Greene J.M. Renormalization of period-doubling in symmetric four-dimensional volume-preserving maps//Phys. Rev. A.1987.Vol. 35, No 9. P. 3911–3917.

21. Kuznetsov A.P., Kuznetsov S.P., Sataev I.R. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos // Physica D. 1997. Vol. 109. P. 91–112.

22. Hu B., Rudnik J. Exact solution of the Feigenbaum renormalization group equations for intermittency // Phys. Rev. Lett. 1982. Vol. 48, No 24. P. 1645–1648.

23. Hirsch J.E., Nauenberg M., Scalapino D.J. Intermittency in the presence of noise: A renormalization group formulation // Phys. Lett. A. 1982. Vol. 87. P. 391.

24. MacKay R.S. A renormalization approach to invariant circles in area-preserving maps // Physica D. 1983. Vol. 7, No 1–3. P. 283–300.

25. Wilbrink J. New fixed point of the renormalisation operator associated with the recurrence of invariant circles in generic Hamiltonian maps // Nonlinearity. 1990. Vol. 3. P. 567–584.

26. Гольберг А.И., Синай Я.Г., Ханин К.М. Универсальные свойства для последовательностей бифуркаций утроения периода // УМН. 1983. Т. 38, No 1. C. 159–160.

27. Cvitanovic P., Myrheim J. Universality for period n-tuplings in complex mappings // Phys. Lett. A. 1983. Vol. 94. P. 329.

28. Isaeva O.B., Kuznetsov S.P. On scaling properties of two-dimensional maps near the accumulation point of the period-tripling cascade // Regular and Chaotic Dynamics. 2000. Vol. 5, No 4. P. 459–476.

29. Кузнецов С.П. Универсальность и подобие в поведении связанных систем Фейгенбаума // Известия вузов. Радиофизика. 1985. Т. 28, No 8. C. 991–1007.

30. Kook H., Ling F.H., Schmidt G. Universal behavior of coupled nonlinear systems // Phys. Rev. A. 1991. Vol. 43, No 6. P. 2700–2708.

31. Kim S.-Y. Universality of period doubling in coupled maps // Phys. Rev. E. 1994. Vol. 49. P. 1745–1748.

32. Stavans J., Heslot F., Libchaber A. Fixed winding number and the quasiperiodic route to chaos in a convective fluid//Phys.Rev. Lett. 1985. Vol. 55,No 6. P. 596–599.

33. Jensen M. H., Kadanoff L. P., Libchaber A., Procaccia I., Stavans J. Glodal universality at the onset of chaos: Results of a forced Rayleigh – Benard experiment // Phys. Rev. Lett. 1985. Vol. 55, No 25. P. 2798–2801.

34. Su Z., Rollins R.W., Hunt E.R. Measurements of f(α) spectra of attractors at transitions to chaos in driven diode resonator systems // Phys. Rev. A. 1987. Vol. 36, No 7. P. 3515–3517.

35. Kajanto M.J., Salomaa M.M. Effects of external noise on the circle map and the transition to chaos in Josephson junctions // Solid State Communications. 1985. Vol. 53, No 1. P. 99–106.

36. Crutchfield J.P., Nauenberg M., Rudnik J. Scaling for external noise at the onset of chaos // Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 933–935.

37. Shraiman B., Wayne C.E., Martin P.C. Scaling theory for noisy period-doubling transitions to chaos // Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 935–939.

38. Gyorgyi G., Tishby N.  ̈ Scaling in stochastic Hamiltonian systems: A renormalization approach // Phys. Rev. Lett. 1987. Vol. 58, No 6. P. 527–530.

39. Kapustina J.V., Kuznetsov A.P., Kuznetsov S.P., Mosekilde E. Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in presence of noise // Phys. Rev. E. 2001. Vol. 64. 066207 (12 pages).

40. Gyorgyi G., Tishby N.  ̈ Path integrals in Hamiltonian systems: breakup of the last Kolmogorov-Arnold-Moser torus due to random forces // Phys. Rev. Lett. 1989. Vol. 62. No 4. P. 353–356.

41. Isaeva O.B., Kuznetsov S.P., Osbaldestin A.H. Effect of noise on the dynamics of a complex map at the period-tripling accumulation point // Phys. Rev. E. 2004. Vol. 69, 036216 (6 pages).

42. Markosova M., Markos P. Numerical studies of the noisy sine circle map // Phys. Lett. A. 1989. Vol. 136, No 7, 8. P. 369–373.

43. Dixon T.W., Gherghetta T., Kenny B.G. Universality in the quasiperiodic route to chaos // Chaos. 1996. Vol. 6, No 1. P. 32–42.

44. De la Llave R., Petrov N.P. Regularity of conjugacies between critical circle maps: An experimental study // Experimental Mathematics. 2002. Vol. 11. P. 219–242.

45. Rossler J., Kiwi M., Hess B., Marcus M.  ̈ Modulated nonlinear processes and a novel mechanism to induce chaos // Phys. Rev. A. 1989. Vol. 39, No 11. P. 5954–5960.

46. Marcus M., Hess B. Lyapunov exponents of the logistic map with periodic forcing // Computers and Graphics. 1989. Vol. 13, No 4. P. 553–558.

47. Bastos de Figueireido J.C., Malta C.P. Lyapunov graph for two-parameter map: Application to the circle map // Int. J. of Bifurcation and Chaos. 1998. Vol. 8, No 2. P. 281–293.

48. Kuznetsov A.P., Savin A.V. About the typical structures and chaos border in the parameter plane of non-autonomous discrete maps with period-doubling // Nonlinear Phenomena in Complex Systems. 2002. Vol. 5, No 3. P. 296–301.

49. Fiel D. Scaling for period-doubling sequences with correlated noise // J. Phys. A: Math. Gen. 1987. Vol. 20. P. 3209–3217.

50. Choi S.-Y., Lee E.K. Scaling behavior at the onset of chaos in the logistic map driven by colored noise // Phys. Lett. A. 1995. Vol. 205. P. 173–178.

51. Ivankov N.Yu., Kuznetsov S.P. Complex periodic orbits, renormalization, and scaling for quasiperiodic golden-mean transition to chaos // Phys. Rev. E. 2001. Vol. 63. 046210 (10 pages).

52. Crutchfield J.P., Farmer J.D., Huberman B.A. Fluctuations and simple chaotic dynamics // Phys. Rep. 1982. Vol. 92, No 2. P. 45–82.

53. Jensen M.H., Bak P., Bohr T. Transition to chaos by interaction of resonances in dissipative systems. I. Circle maps // Phys. Rev. A. 1984. Vol. 30, No 4. P. 1960–1969.

54. Alstrøm P., Levinsen M.T., Rasmussen D.R. Scaling exponents, relations, and order dependence for circle maps // Physica D. 1987. Vol. 26. P. 336–346.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Кузнецов-IzvVUZ_AND-13-6-56,
author = {A. P. Kuznetsov and Sergey P. Kuznetsov and Yu. V. Sedova },
title = {ABOUT SCALING PROPERTIES IN THE NOISY CIRCLE MAP AT THE GOLDEN-MEAN WINDING NUMBER},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/about-scaling-properties-in-the-noisy-circle-map-at-the-golden-mean-winding-number},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-5-56-76},pages = {56--76},issn = {0869-6632},
keywords = {-},
abstract = {Scaling regularities are examined associated with effect of additive noise upon a critical circle map at the golden-mean winding number. On a basis of the RG approach of Hamm and Graham [1] we present an improved numerical estimate for the scaling constant responsible for the effect of noise, g = 2:3061852653::: Decrease of the noise amplitude by this number ensures possibility of observation for one more level of fractal-like structure associated with increase of characteristic time scale by factor (p5 + 1)=2. Numeric results demonstrating evidence of the expected scaling are presented, e.g. portraits of the noisy attractors, devil’s staircase plots, and Lyapunov charts. }}