SEARCH FOR APPROXIMATE METHODS FOR DESCRIPTION OF NONLINEAR VACUUM e− e+ PAIRS CREATION PROCESSES IN ELECTROMAGNETIC FIELDS
Cite this article as:
Dmitriev V. V., Smolyansky S. A., Yahibbaev R. M. SEARCH FOR APPROXIMATE METHODS FOR DESCRIPTION OF NONLINEAR VACUUM e− e+ PAIRS CREATION PROCESSES IN ELECTROMAGNETIC FIELDS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 3, pp. 27-37. DOI: https://doi.org/10.18500/0869-6632-2015-23-3-27-37
The simplest kinetic equation for description of the electron-positron plasma vacuum creation in a strong linearly polarized electric («laser») field was reduced to the nonlinear ordinary differential equation of the second order. The corresponding truncated equation without the dissipative contributions was obtained also. In area of the tunnel mechanism action the non-local under an external field solutions for the residual electron-positron plasma was first obtained. In general case, the upper estimations for the kinetic equation solutions was found on the Riccati equation basis that is a result of application of the stereographic projection method to the basic kinetic equation.
1. Schwinger J. // Phys. Rev. 1951. Vol. 82, P. 664.
2. Gregori G., Blaschke D.B. et al. // High Energy Density Physics. 2010. Vol. 6, No 2. P. 166.
3. Brezin E., Itzykson C. // Phys. Rev. D. 1970. Vol. 2. P. 1191.
4. Bulanov S.S., Narozhny N.B., Mur V.D., Popov. V.S. // JETP. 2006. Vol. 102, No 1. P. 9.
5. Smolyansky S.A., Dmitriev V.V., Panferov A.D., Prozorkevich A.V., Blaschke D., Juchnowski L. // Proceedings of the XXII Baldin ISHEPP. 2014. P. 043.
6. Schmidt S., Blaschke D., Ropke G., Smolyansky S.A., Prozorkevich A.V., Toneev V.D. // IJMP. E. 1998. Vol. 07, No 06. P. 709.
7. Fedotov A.M., Gelfer E.G., Korolev K.Yu., Smolyansky S.A. // Phys. Rev. D. 2011. Vol. 83. P. 025011.
8. Smolyansky S.A., Bonitz M., Prozorkevich A.V. // Contrib. Plasma Phys. 2013. Vol. 53, No 10. P. 788.
9. Smolyansky S.A., Prozorkevich A.V., Dmitriev V.V., Tarakanov A.V. // IJMP. E. 2014. Vol. 23, No 11. P. 1450068.
10. Kamke E. Differentialgleichungen Lo ̈sungsmethoden und Lo ̈sungen. Vieweg+Teubner Verlag, 1977. 670 p.
11. Nayfeh Ali H. Perturbation Methods. John Wiley & Sons, New York, 2000. 441 p.
12. Fedoryuk M.V. Asymptotic Analysis: Linear Ordinary Differential Equations. Springer-Verlag Berlin Heidelberg, 1993. 363 p.
13. Gliner E.B. // Physics-Uspekhi. 2002. Vol. 45, No 6. P. 213.
14. Yokomizo N. // Annals of Phys. 2014. Vol. 351. P. 166.
15. Narozhnyi N.B., Nikishov A.I. // Theor. and Math. Phys. 1976. Vol. 26, No 1. P. 9.
16. Webb G.M., Hu Q., le Roux J.A., Dasgupta B., Zank G.P. // J. Phys. A: Math. Theor. 2012. Vol. 45, No 2. P. 025203.
BibTeX
author = {V. V. Dmitriev and S. A. Smolyansky and R. M. Yahibbaev},
title = { SEARCH FOR APPROXIMATE METHODS FOR DESCRIPTION OF NONLINEAR VACUUM e− e+ PAIRS CREATION PROCESSES IN ELECTROMAGNETIC FIELDS},
year = {2015},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {23},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/search-for-approximate-methods-for-description-of-nonlinear-vacuum-e-e-pairs-creation},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-3-27-37},pages = {27--37},issn = {0869-6632},
keywords = {Vacuum creation,electron-positron plasma,Riccati equation.},
abstract = {The simplest kinetic equation for description of the electron-positron plasma vacuum creation in a strong linearly polarized electric («laser») field was reduced to the nonlinear ordinary differential equation of the second order. The corresponding truncated equation without the dissipative contributions was obtained also. In area of the tunnel mechanism action the non-local under an external field solutions for the residual electron-positron plasma was first obtained. In general case, the upper estimations for the kinetic equation solutions was found on the Riccati equation basis that is a result of application of the stereographic projection method to the basic kinetic equation. Download full version }}