LARGEST LYAPUNOV EXPONENT OF CHAOTIC OSCILLATORY REGIMES COMPUTING FROM POINT PROCESSES IN THE NOISE PRESENCE


Cite this article as:

Mohammad Y. K., Pavlov A. N. LARGEST LYAPUNOV EXPONENT OF CHAOTIC OSCILLATORY REGIMES COMPUTING FROM POINT PROCESSES IN THE NOISE PRESENCE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 6, pp. 31-39. DOI: https://doi.org/10.18500/0869-6632-2015-23-6-31-39


We propose a modified method for computing of the largest Lyapunov exponent of chaotic oscillatory regimes from point processes at the presence of measurement noise that does not influence on the system’s dynamics. This modification allow a verification to be made of the estimated dynamical characteristics precision. Using the Rossler system in the regime of a phase-coherent chaos we consider features of application of this method to point processes of the integrate-and-fire and the threshold-crossing models.

DOI: 
10.18500/0869-6632-2015-23-6-31-39
Literature

1. Bialek W., Rieke F., De Ruyter van Steveninck R.R., and Warland D. Reading a neural code // Science. 1991. Vol. 252. 1854.

2. Sauer T. Interspike interval embedding of chaotic signals // Chaos. 1995. Vol. 5. 127.

3. Castro R. and Sauer T. Correlation dimension of attractors through interspike intervals // Phys. Rev. E. 1997. Vol. 55. 287.

4. Hegger R. and Kantz H. Embedding of sequence of time intervals // Europhys. Lett. 1997. Vol. 38. 267.

5. Castro R. and Sauer T. Reconstructing chaotic dynamics through spike filters // Phys. Rev. E. 1999. Vol. 59. 2911.

6. Racicot D.M. and Longtin A. Interspike interval attractors from chaotically driven neuron models // Physica D. 1997. Vol. 104. 184.

7. Sauer T. Reconstruction of dynamical system from interspike intervals // Phys. Rev. Lett. 1994. Vol. 72. 3911.

8. Pavlov A.N., Sosnovtseva O.V., Mosekilde E., and Anishchenko V.S. Extracting dynamics from threshold-crossing interspike intervals: Possibilities and limitations // Phys. Rev. E. 2000. Vol. 61. 5033.

9. Pavlov A.N., Sosnovtseva O.V., Mosekilde E., and Anishchenko V.S. Chaotic dynamics from interspike intervals // Phys. Rev. E. 2001. Vol. 63. 036205.

10. Sauer T., Yorke J.A., and Casdagli M. Embedology // J. Stat. Phys. 1991. Vol. 65. 579.

11. Wolf A., Swift J.B., Swinney H.L., and Vastano J.A. Determining Lyapunov exponents from a time series // Physica D. 1985. Vol. 16. 285.

12. Janson N.B., Pavlov A.N., Neiman A.B., and Anishchenko V.S. Reconstruction of dynamical and geometrical properties of chaotic attractors from threshold-crossing interspike intervals // Phys. Rev. E. 1998. Voo. 58. R4.

13. Pavlov A.N., Pavlova O.N., Mohammad Y.K., and Kurths J. Quantifying chaotic dynamics from integrate-and-fire processes // Chaos. 2015. Vol. 25. 013118.

14. Pavlov A.N., Pavlova O.N., Mohammad Y.K., and Kurths J. Characterization of the chaos–hyperchaos transition based on return times // Phys. Rev. E. 2015. Vol. 91. 022921.

15. Benettin G., Galgani L., Giorgilli A., and Strelcyn J.M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them // Meccanica. 1980. Vol. 15. 9.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Мохаммад-IzvVUZ_AND-23-6-31,
author = {Yasir Khalaf Mohammad and A. N. Pavlov},
title = {LARGEST LYAPUNOV EXPONENT OF CHAOTIC OSCILLATORY REGIMES COMPUTING FROM POINT PROCESSES IN THE NOISE PRESENCE},
year = {2015},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {23},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/largest-lyapunov-exponent-of-chaotic-oscillatory-regimes-computing-from-point-processes-in},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-6-31-39},pages = {31--39},issn = {0869-6632},
keywords = {колебания,Хаос,Показатели Ляпунова,точечные процессы},
abstract = {We propose a modified method for computing of the largest Lyapunov exponent of chaotic oscillatory regimes from point processes at the presence of measurement noise that does not influence on the system’s dynamics. This modification allow a verification to be made of the estimated dynamical characteristics precision. Using the Rossler system in the regime of a phase-coherent chaos we consider features of application of this method to point processes of the integrate-and-fire and the threshold-crossing models. Download full version }}