CRITICAL DYNAMICS FOR ONE-DIMENSIONAL MAPS PART 1: FEIGENBAUM'S SCENARIO
Cite this article as:
Kuznetsov A. P., Kuznetsov S. P. CRITICAL DYNAMICS FOR ONE-DIMENSIONAL MAPS PART 1: FEIGENBAUM'S SCENARIO. Izvestiya VUZ. Applied Nonlinear Dynamics, 1993, vol. 1, iss. 1, pp. 15-?.
A review of main results is given, concerning the Feigenbaum's scenario in the context of critical phenomena theory. Computer-generated illustrations of scaling are presented. Approximate renormalization group (RG) analysis is considered, allowing to obtain RG transformation in an explicit form. Examples of nonlinear systems are discussed, demonstrating this type of critical behaviour.
Key words:
Literature
- Myrberg P.J. Iteration der reelen polynome zweiten grades//Ann.Acad.Sci. Fenn. Ser. A. 1963. Vol.336. P.1.
- Шарковский А.М. Сосуществование циклов непрерывного преобразования прямой в прямую//Укр. мат. журн. 1964. Т.26. N 1. С.61.
- Metropolis N, Stein P.R., Stein ML. Finite limit sets for transformations of the unit interval//J.Comb. Theory. 1973. Vol.15. P.25.
- May R.M. Simple mathematical models with very complicated dynamics// Nature. 1976. Vol.261. P.459.
- Афраймович В.С., Шильников Л.П. О некоторых глобальных бифуркациях, связанных с исчезновением неподвижных точек седлоузел//Докл. АН СССР. 1974. Т.219. N3. С.1281.
- Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems//Commun. Math. Phys. 1980. Vol.74. P.189.
- Арнольд В.И. Дополнительные главы теории обыкновенных дифференциальных уравнений. М.: Наука, 1978.
- Ruelle D., Takens F. On the nature of turbulence//Commun. Math. Phys. 1971. Vol.20. P.167.
- Shenker S.J. Scaling behavior in a map of a circle onto itself: Empirical results //Physica. 1982. Vol.D5. P.405.
- Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations//J. Stat. Phys. 1978. Vol:19, N 1. P.25.
- Feigenbaum M.J. The universal metric properties of nonlinear transformations //J. Stat. Phys. 1979. Vol.21, N 6. P..669.
- Фейгенбаум М. Универсальность в поведении нелинейных систем// УФН. 1983. Т.141, N 2. С.343.
- HirshJ.E., Nauenberg M., Scalapino D.J. Intermittency in the presence of noice: a renormalization group formulation/Phys. Lett. 1982. Vol.A87. P.391.
- Hu B., Rudnik J. Exact solution to the Feigenbaum renormalization-group equations for intermittency//Phys. Rev. Lett. 1982. Vol.48. P.1645.
- Ostlund S., Rand D., Sethna J., Siggia E. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems// Physica. 1983. Vol.D8. P.303.
- Feigenbaum M.J., Kadanoff L.P., Shenker S.J. Quasiperiodicity in dissipative systems: Renormalization group analysis//Physica. 1982. Vo1.5D. P.370.
- HuB. Introduction to real-space renormalization-group methods in critical and chaotic phenomena//Phys. Rep. 1982. Vol.91, N.5. P.233.
- Aranson LS., Gaponov-Grekhov A. V., Rabinovich M.I. The onset and spatial development of turbulence in flow systems//Physica. 1988. Vol.D33. P.1.
- Chang S.J., Wortis M, Wright J.A. Iterative properties of a one-dimensional quartic map. Critical lines and tricritical behavior//Phys. Rev. 1981. Vol.A24, N5. P.2669.
- 3акс М.А., Любимов Д.В., Пиковский А.С. Универсальные сценарии перехода к хаосу через гомоклинические бифуркации. Препринт ин-та механики сплошных сред УО АН СССР. 1987. 70 с.
- Вул Е.Б., Синай Я.Г., Ханин К.М. Универсальность Фейгенбаума и термодинамический формализм//УМН. 1984. Т.39, N Э. С.З.
- Мун Ф. Хаотические колебания. М.: Мир, 1990.
- Берже П., Помо И., Видаль К Порядок в хаосе. М.: Мир, 1991.
- Шустер Г. Детерминированный хаос. М.: Мир, 1988.
- Jakobson M. V. Absolutely continuous measures for oneparameter families of one-dimensional maps//Commun. Math. Phys. 1981. Vol.81, N 1. P.39.
- Шарковский А.Н., Май стренко Ю.А., Романенко Ю.Е. Разностные уравнения и их приложения. Киев: Наукова думка, 1986.
- Huberman B., ZisookA. Power spectra of strange attractors//Phys. Rev. Lett. 1981. Vo1.26. P.626.
- Nauenberg M., RudnikJ. Universality and the power spectrum at the onset of chaos//Phys. Rev. 1981. Vol.B24. P.493.
- Halsey TS., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I. Fractal measures and their singularities//Phys. Rev. 1986. Vol.A33. P.1141.
- GrassbergerP., Procaccial. Characterization of strange attractors//Phys. Rev. Lett. 1983. Vol.50, N 5. P.346.
- Lanford O.E. III. A computer assisted proof of the Feigenbaum conjectures //Bull. Amer. Math. Soc. 1982. Vol.6, N 3. P.427.
- Franceschini V. Feigenbaum seqence of bifurcations in the Lorenz model//J. Stat. Phys. 1980. Vol.22. P.397.
- Kai T. Universality of power spectrum of a dinamical system with an infinite sequence of period doubling bifurcations//Phys. Lett. 1981. Vol.A86, N 5. P.263.
- TestaJ., Pere J.,Jeffries C. Evidence for universal chaotic behavior of a driven nonlinear oscillator//Phys. Rev. Lett. 1982. Vol.48, N 11. P.714.
- Yen WJ., Kao Y.H. Universal scaling and chaotic behavior of a Josephson-junction analog//Phys. Rev. Lett. 1982. Vol.49, N 26. P.1888.
- Анищенко В.С., Астахов В.'В., Летчфорд Т.Е., Сафонова М.А. О бифуркациях в трехмерной двухпараметрической автоколебательной системе со странным аттрактором//Изв. вузов. Сер. Радиофизика. 1983. Т.26, N 2, С.169.
- LibhaberA., Fauve S., Laroche C. Two-parameter study of the routes to chaos //Physica. 1983. Vol.ZD. P.73.
- Xiao-lan Chen, You-gin Wan& Shi-gang Chen. Period-doubling bifurcations and chaotic behavior in nonequilibrium superconductivity film//Solid State Commun. 1984. Vol.25, N 1. P.1.
- Астахов В.В.,Безручко Б. П.,Селезнев Е.П. Исследование динамики нелинейного колебательного контура при гармоническом воздействии//Радиотехника и электроника. 1987. Т.32, N 12. С.2558.
- Lorenz E.N. Deterministic nonperiodic flow//J. Atmos. Sci. 1963. Vol.20, N 2. P.130.
- Ikeda K, Daido H., Akimoto 0. Optical turbulence: chaotic behavior of transmitted light from a ring cavity//Phys. Rev. Lett. 1980. Vol.45. P.709.
- Carmichael H., Snapp R., Schieve W. Oscillatory instabilities leading to "optical turbulence" in a bistable ring cavity//Phys. Rev. 1982. Vol.26. P.3408.
- Кузнецов С.П., Ерастова Е.Н. Теория Фейгенбаума//Лекцин по электронике СВЧ и радиофизике. Саратов, Изд-во Сарат. унта, 1983. Кн.2. С.3.
- Collet P., Eckmann J.P., Koch H. Period doubling bifurcations for families of maps on R" //J.stat. Phys. 1980. Vol.25, N 1. P.1.
- Crawford D., Omohundro S. On the global structure of period doubling flows //Physica. 1984. Vo1.13D. P.161.
-
Кузнецов А.Л., Кузнецов С.П. Критическая динамика решеток связанных отображений: Обзор//Изв. вузов. Сер. Радиофизика. 1991. Т.34, N 10.С.1021.
- Кузнецов А.П., Кузнецов С.П., Сатаев И.Р. Воздействие фрактального сигнала на систему Фейгенбаума и бифуркация в уравненин ренормгруппы// Изв. вузов. Сер. Радиофизика. 1991. Т.34, N 6. С.661.
- KuznetsovA.P., Kuznetsov S.P., Sataev LR. Period-doubling system under fractal signal. Bifurcation in the renormalization group equation//Chaos, Solitons&Fractals. 1991. Vol.1, N 4. P.355.
- Chang S.J., Fendley P.R. Scaling and universal behavior on the bifurcation attractor//Phys. Rev. 1986. Vol.A33, N 6. P.4092.
- Чириков Б.В., Шепелянский Д. Л. Граница хаоса и статистические аномалии. Препринт 8б-174. Саратовский филиал Новосиб. ин-та ядерной физики СО АН СССР, 1986. 30 с.
Journal issue:
Heading:
Status:
одобрено к публикации
Short Text (PDF):
Full Text (PDF):
BibTeX
@article{Кузнецов-IzvVUZ_AND-1-1-15,
author = {A. P. Kuznetsov and Sergey P. Kuznetsov},
title = {CRITICAL DYNAMICS FOR ONE-DIMENSIONAL MAPS PART 1: FEIGENBAUM'S SCENARIO},
year = {1993},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {1},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/critical-dynamics-for-one-dimensional-maps-part-1-feigenbaums-scenario},
address = {Саратов},
language = {russian},
doi = {?},pages = {15--?},issn = {0869-6632},
keywords = {Хаос},
abstract = {A review of main results is given, concerning the Feigenbaum's scenario in the context of critical phenomena theory. Computer-generated illustrations of scaling are presented. Approximate renormalization group (RG) analysis is considered, allowing to obtain RG transformation in an explicit form. Examples of nonlinear systems are discussed, demonstrating this type of critical behaviour. }}
author = {A. P. Kuznetsov and Sergey P. Kuznetsov},
title = {CRITICAL DYNAMICS FOR ONE-DIMENSIONAL MAPS PART 1: FEIGENBAUM'S SCENARIO},
year = {1993},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {1},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/critical-dynamics-for-one-dimensional-maps-part-1-feigenbaums-scenario},
address = {Саратов},
language = {russian},
doi = {?},pages = {15--?},issn = {0869-6632},
keywords = {Хаос},
abstract = {A review of main results is given, concerning the Feigenbaum's scenario in the context of critical phenomena theory. Computer-generated illustrations of scaling are presented. Approximate renormalization group (RG) analysis is considered, allowing to obtain RG transformation in an explicit form. Examples of nonlinear systems are discussed, demonstrating this type of critical behaviour. }}