NONLINEAR DYNAMICS OF SPIN WAVES IN LATERAL MAGNETIC MICROWAVEGUIDES


Cite this article as:

Odintsov S. A., Sadovnikov А. V. NONLINEAR DYNAMICS OF SPIN WAVES IN LATERAL MAGNETIC MICROWAVEGUIDES. Izvestiya VUZ. Applied Nonlinear Dynamics, 2017, vol. 25, iss. 5, pp. 56-68. DOI: https://doi.org/10.18500/0869-6632-2017-25-5-56-68


In the present work, a numerical and experimental study of the nonlinear dynamics of spin waves in lateral magnetic microwave guides was made. The mechanism of nonlinear spin-wave coupling between different types of modes in lateral waveguides was revealed. The investigation of lateral magnetic microstructures supporting both linear and nonlinear propagation of spin waves is of great interest nowadays. Moreover, the study of nonlinear modes of propagation of coupled spin waves in lateral magnetic microwave guides is of great importance for the nonlinear physics of dissipative systems as a whole.

It is shown, that the inhomogeneous distribution of the value of the internal magnetic field leads to the variation of the spatial profile of the eigenmode of electromagnetic waves propagating in a system of lateral magnetic microwaveguides. The results of the numerical simulation are in good agreement with the results of the experimental study. The effects of nonlinear switching of the power of the spin-wave signal in systems of lateral magnetic microwave guides allow creating nonlinear couplers and power dividers of the spin-wave signal in the planar topologies of magnon networks for selective processing of information signals.

It is shown, that an increase in the amplitude of the spin wave leads to a change in the coupling length. The effects of nonlinear switching in lateral magnetic waveguides allow the creation of nonlinear couplers and power dividers of the spin-wave signal in planar topologies of magnonic networks for selective processing of information signals in the microwave and terahertz ranges.

DOI: 10.18500/0869-6632-2017-25-5-56-68

References: Odintsov S.A., Sadovnikov A.V. Nonlinear dynamics of spin waves in lateral magnetic microwaveguides. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017. Vol. 25. Issue 5. P. 56–68. DOI: 10.18500/0869-6632-2017-25-5-56-68

 
 
DOI: 
10.18500/0869-6632-2017-25-5-56-68
Literature

1. Nikitov S.A., Kalyabin D.V., Lisenkov I.V., Slavin A.N., Barabanenkov Y.N., Osokin S.A., Sadovnikov A.V., Beginin E.N., Morozova M.A., Sharaevsky Y.P., Filimonov Y.A., Khivintsev Y.V., Vysotsky S.L., Sakharov V.K., and Pavlov E.S. Magnonics: A new research area in spintronics and spin wave electronics. Phys. Usp. 2015. Vol. 58. Number 10.
2. Chumak A.V., Vasyuchka V.I., Serga A.A., Hillebrands B. Magnon spintronics. Nat. Phys. 2015. Vol. 11. P. 453.
3. Gurevich A.G., Melkov G.A. Magnetization Oscillations and Waves. London: CRC Press, 1996.
4. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. Springer, 2009.
5. Rosanov N. Dissipative optical solitons. Phys. Usp. 2000. Vol. 43. Issue 4. Pp. 421–424.
6. Zvezdin A.K., Popkov A.F. Contribution to the nonlinear theory of magnetostatic spin waves // Zh. Eksp. Teor. Fiz. 1983. Vol. 84. P. 606–615.
7. Zilberman P.E., Nikitov S.A., Temiryazev A.G. Four-magnon decay and the kinetic instability of a magnetostatic traveling wave in yttrium garnet ferrite films // JETP Lett. 1985. Vol. 42. Issue 3. P. 110.

8. Boardman A.D., Nikitov S.A., Waby N. Existence of spin-wave solitons in an antiferromagnetic film // Phys.Rev. B. 1993. Vol. 48. 13602.

9. Chen M., Tsankov M., Nash J., Patton C. Microwave magnetic-envelope dark solitons in yttrium iron garnet thin films // Phys. Rev. Lett. 1993. Vol. 70. 1707.
10. Damon R.W., Eshbach J.R. Magnetostatic modes of a ferromagnet slab // J. Phys. Chem. Solids. 1961. Vol. 19. P. 308.
11. O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples // J. Appl. Phys. 1978. Vol. 49. Pp. 4886–4895.
12. Bajpai S.N. Excitation of magnetostatic surface waves: Effect of finite sample width // J. Appl. Phys. 1985. Vol. 58. P. 910.
13. Morozova M.A., Grishin S.V., Sadovnikov A.V., Romanenko D.V., Sharaevskii Yu.P., Nikitov S.A. Band gap control in a line-defect magnonic crystal waveguide // Appl. Phys. Lett. 2015. Vol. 107. 242402.

14. Demidov V.E., Demokritov S.O. Magnonic waveguides studied by microfocus Brillouin light scattering // IEEE Trans. Magn. 2015. Vol. 51. 0800215.

15. Beginin E.N., Sadovnikov A.V., Sharaevskii Yu.P., Nikitov S.A. Multimode surface magnetostatic wave propagation in irregular planar YIG waveguide // Solid State Phenomena. 2014. Vol. 215. Pp. 389–393.
16. Beginin E., Sadovnikov A., Sharaevsky Y., Nikitov S. Spatiotemporal dynamics of magnetostatic and spin waves in a transversely confined ferrite waveguide // Bull. Russ. Acad. Sci.: Phys. 2013. Vol. 77. Pp. 1429–1431.

17. Morozova M.A., Grishin S.V., Sadovnikov A.V., Sharaevskii Y.P., Nikitov S.A. Magnonic bandgap control in coupled magnonic crystals // IEEE Trans. Magn. 2014. Vol. 50. 4007204.

18. Demidov V.E., Demokritov S.O., Rott K., Krzysteczko P., Reiss G. Mode interference and periodic self-focusing of spin waves in permalloy microstripes // Phys. Rev. B. 2008. Vol. 77. 064406.
19. Kumar D., Adeyeye A.O. Broadband and total autocollimation of spin waves using planar magnonic crystals // J. Appl. Phys. 2015. Vol. 117. 143901.
20. Suhl H. The theory of ferromagnetic resonance at high signal powers // Journal of Physics and Chemistry of Solids. 1957. Vol. 1. P. 209.
21. Slavin A.N., Buttner O., Bauer M., Demokritov S.O., Hillebrands B., Kostylev M.M., Kalinikos B.A., Grimalsky V.V., Rapoport Y. Collision properties of quasi-one-dimensional spin wave solitons and two-dimensional spin wave bullets // Chaos. 2003. Vol. 13.

22. Demidov V.E., Rekers P., Mahrov B., Demokritov S.O. Nonlinear transverse stabilization of spin-wave beams in magnetic stripes // Applied Physics Letters. 2006. Vol. 89. 212501.
23. Demidov V. E., Hansen U.-F., Dzyapko O., Koulev N., Demokritov S.O., Slavin A.N. Formation of longitudinal patterns and dimensionality crossover of nonlinear spin waves in ferromagnetic stripes // Phys. Rev. B. 2006. Vol. 74. 092407.
24. Demidov V.E., Jersch J., Rott K., Krzysteczko P., Reiss G., Demokritov S.O. Nonlinear propagation of spin waves in microscopic magnetic stripes // Phys. Rev. Lett. 2009. Vol. 102. 177207.
25. Demidov V.E., Evelt M., Bessonov V., Demokritov S.O., Prieto J.L., Munoz M., Ben Youssef J., Naletov V.V., de Loubens G., Klein O., Collet M., Bortolotti P., Cros V., Anane A. Direct observation of dynamic modes excited in a magnetic insulator by pure spin current // Scientific Reports. 2016. Vol. 6. 32781.
26. Adam J.D., Davis L.E., Dionne G.F., Schloemann E.F., Stitzer S.N. Ferrite devices and materials // IEEE Trans. MTT. 2002. Vol. 50. Issue 3. P. 721.

27. Scott M.M., Patton C.E., Kostylev M.P., Kalinikos B.A. Nonlinear damping of high-power magnetostatic waves in yttrium–iron–garnet films // Journal of Applied Physics. 2004. Vol. 95. Pp. 6294–6301.

28. Hansen U.-H., Demidov V.E., Demokritov S.O. Dual-function phase shifter for spin-wave logic applications //Applied Physics Letters. 2009. Vol. 94. 252502.

29. Sadovnikov A.V., Beginin E.N., Morozova M.A., Sharaevskii Yu.P., Grishin S.V., Sheshukova S.E., Nikitov S.A. Nonlinear spin wave coupling in adjacent magnonic crystals // Appl. Phys. Lett. 2016. Vol. 109. 042407.
30. Sadovnikov A.V., Rozhnev A.G. Electrodynamical characteristics of periodic ferromagnetic structures. Izvestiya VUZ. Appl. Nonlin. Dynamics. 2012. Vol. 20, Issue 1. Pp. 143–159.

31. Karlqvist O. Calculation of the magnetic field in the ferromagnetic layer of a magnetic drum // Trans. Roy. Inst. Techno. 1954. Vol. 86, Issue 3.
32. Davies C.S., Sadovnikov A.V., Grishin S.V., Sharaevsky Y.P., Nikitov S.A., Kruglyak V.V. Field-controlled phase-rectified magnonic multiplexer // IEEE Trans. 2015. Vol. 51, Issue 1.

33. Sadovnikov A.V., Beginin E.N., Odincov S.A., Sheshukova S.E., Sharaevskii Yu.P., Stognij A.I., Nikitov S.A. Frequency selective tunable spin wave channeling in the magnonic network // Appl. Phys. Lett. 2016. Vol. 108. 172411.
34. Lvov V.S. Wave Turbulence under Parametric Excitation. Berlin: Springer, 1994.
35. Ustinov A.B., Kalinikos B.A. A microwave nonlinear phase shifter // Applied Physics Letters. 2008. Vol. 93. 102504.

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Одинцов -IzvVUZ_AND-25-5-56,
author = {S. A. Odintsov and А. V. Sadovnikov},
title = {NONLINEAR DYNAMICS OF SPIN WAVES IN LATERAL MAGNETIC MICROWAVEGUIDES},
year = {2017},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {25},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/nonlinear-dynamics-of-spin-waves-in-lateral-magnetic-microwaveguides},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2017-25-5-56-68},pages = {56--68},issn = {0869-6632},
keywords = {Lateral waveguides,spin wave,signal processing devices,coupler},
abstract = {In the present work, a numerical and experimental study of the nonlinear dynamics of spin waves in lateral magnetic microwave guides was made. The mechanism of nonlinear spin-wave coupling between different types of modes in lateral waveguides was revealed. The investigation of lateral magnetic microstructures supporting both linear and nonlinear propagation of spin waves is of great interest nowadays. Moreover, the study of nonlinear modes of propagation of coupled spin waves in lateral magnetic microwave guides is of great importance for the nonlinear physics of dissipative systems as a whole. It is shown, that the inhomogeneous distribution of the value of the internal magnetic field leads to the variation of the spatial profile of the eigenmode of electromagnetic waves propagating in a system of lateral magnetic microwaveguides. The results of the numerical simulation are in good agreement with the results of the experimental study. The effects of nonlinear switching of the power of the spin-wave signal in systems of lateral magnetic microwave guides allow creating nonlinear couplers and power dividers of the spin-wave signal in the planar topologies of magnon networks for selective processing of information signals. It is shown, that an increase in the amplitude of the spin wave leads to a change in the coupling length. The effects of nonlinear switching in lateral magnetic waveguides allow the creation of nonlinear couplers and power dividers of the spin-wave signal in planar topologies of magnonic networks for selective processing of information signals in the microwave and terahertz ranges. DOI: 10.18500/0869-6632-2017-25-5-56-68 References: Odintsov S.A., Sadovnikov A.V. Nonlinear dynamics of spin waves in lateral magnetic microwaveguides. Izvestiya VUZ. Applied Nonlinear Dynamics. 2017. Vol. 25. Issue 5. P. 56–68. DOI: 10.18500/0869-6632-2017-25-5-56-68     }}