EXPERIMENTAL RESEARCH OF SELF-OSCILLATION DESTRUCTION UNDER ADDITIVE NOISE ACTION


Cite this article as:

Semenov V. V. EXPERIMENTAL RESEARCH OF SELF-OSCILLATION DESTRUCTION UNDER ADDITIVE NOISE ACTION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 43-51. DOI: https://doi.org/10.18500/0869-6632-2013-21-3-43-51


Evolution of probabilistic distribution in self-sustained oscillators with increase of noise intensity is studied by means of numerical simulation and natural experiments. Two different systems are considered: van der Pol and Anishchenko–Astakhov self-sustained oscillators. Destruction of probabilistic distribution form, which is typical for noisy self-oscillation, by additive noise is showed.

DOI: 
10.18500/0869-6632-2013-21-3-43-51
Literature

1. Benzi R., Sutera A., Vulpiani A. The mechanism of stochastic resonance// J. Phys. A: Math. Gen. 1981. Vol. 14. P. L453.

2. Gammaitoni L., Marchesoni F., Menichella-Saetta E., Santucci S. Stochastic resonance in bistable systems// Phys. Rev. Lett. 1989. Vol. 62. P. 349.

3. Анищенко В.С., Нейман А.Б., Мосс Ф., Шиманский-Гаер Л. Стохастический резонанс: Индуцированный шумом порядок // УФН. 1999. Т. 42, No 1. С. 7.

4. Pikovsky A., Kurths J. Coherence resonance in a noisy driven excitable system//Phys. Rev. Lett. 1997. Vol. 78. P. 775.

5. Lindner B., Schimansky-Geier L. Analytical approach to thе stochastic FizHugh–Nagomo system and coherence resonance // Phys. Rev. E. 1999. Vol. 60, No 6. P. 7270.

6. Neiman A.B. Synchronizationlike phenomena in coupled stochastic bistable systems // Phys. Rev. E. 1994. Vol. 49. P. 3484.

7. Shulgin B., Neiman A., Anishchenko V. Mean switching frequency locking in stochastic bistable system driven by a periodic force // Phys. Rev. Lett. 1995. Vol. 75, No 23. P. 4157.

8. Han S.K., Yim T.G., Postnov D.E., Sosnovtseva O.V. Interacting coherence resonance oscillators // Phys. Rev. Lett. 1999. Vol. 83, No 9. P. 1771.

9. Дмитриев Б.С., Жарков Ю.Д., Садовников С.А., Скороходов В.Н. Синхронизация автоколебаний в клистронном автогенераторе в присутствии шума // Изв. вузов «ПНД». 2011. Т. 19, No 5. С. 17.

10. Анищенко В.С., Сафонова М.А. Индуцированное шумом экспоненциальное разбегание фазовых траекторий в окрестности регулярных аттракторов// Письма в ЖТФ. 1986. Т. 12, вып. 12. С. 740.

11. Ebeling W., Herzel H., Richert W., Schimansky-Geier L. Influence of noise on Duffing – van der Pol oscillators// Zeischrift fur angewandte Мathematik und  ̈ Mechanik. 1986. Vol. 66. P. 141.

12. Schimansky-Geier L., Herzel H. Positive Lyapunov exponents in the Kramers oscillator// J. Stat. Phys. 1993. Vol. 70. P. 141.

13. Короновский А.А. и др. Обобщенная синхронизация и синхронизация, индуцированная шумом, единый тип поведения связанных хаотических систем// ДАН. 2006. Т. 407, No 6. С. 761.

14. Дмитриев Б.С., Жарков Ю.Д., Короновский А.А., Храмов А.Е., Скороходов В.Н. Экспериментальное и теоретическое исследование влияния внешнего шума на динамику клистронного автогенератора// Радиотехника и электроника. 2012. No 1. С. 49.

15. Goldobin D.S., Pikovsky A. Synchronization and desynchronization of self-sustained oscillators by common noise// Phys. Rev. E. 2005. Vol. 71. P. 045201(4).

16. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.

17. Arnold L. Random Dynamical System. Berlin: Springer, 2003.

18. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise// Phys. Rev. Lett. 1986. Vol. 56. P. 1631.

19. Olarrea J., de la Rubia F.J. Stochastic Hopf bifurcation: The effect of colored noise on the bifurcational interval// Phys. Rev. E. 1996. Vol. 53, No 1. P. 268.

20. Arnold L., Sri Namachshivaya N., Schenk-Yoppe K.R.  ́ Toward an understanding of stochastic Hopf bifurcation: А base study // Int. J. Bifurcation and Chaos. 1996. Vol. 6. P. 1947.

21. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances// Chaos, Solitons, and Fractals. 2009. Vol. 39. P. 7.

22. Zakharova A., Vadivasova T., Anishchenko V., Koseska A., Kurths J. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator // Phys. Rev. E. 2010. Vol. 81, No 1. P. 011106.

23. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise// Phys. Rev. F. 1987. Vol. 36. P. 834.

24. Анищенко В.С. Сложные колебания в простых системах. 2-е изд. М.: УРСС, 2009.

 

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Семенов -IzvVUZ_AND-21-3-43,
author = {Vladimir Victorovich Semenov},
title = {EXPERIMENTAL RESEARCH OF SELF-OSCILLATION DESTRUCTION UNDER ADDITIVE NOISE ACTION},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/experimental-research-of-self-oscillation-destruction-under-additive-noise-action},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-3-43-51},pages = {43--51},issn = {0869-6632},
keywords = {Stochastic Andronov–Hopf bifurcation,influence of noise,Van der Pole self-sustained oscillator,Anishchenko–Astakhov self-sustained oscillator.},
abstract = {Evolution of probabilistic distribution in self-sustained oscillators with increase of noise intensity is studied by means of numerical simulation and natural experiments. Two different systems are considered: van der Pol and Anishchenko–Astakhov self-sustained oscillators. Destruction of probabilistic distribution form, which is typical for noisy self-oscillation, by additive noise is showed. }}