NONLINEAR DYNAMICS OF SMALL PERTURBATION OF SEMICONDUCTOR SUPERLATTICE REFERENCE STATE NEAR GENERATION THRESHOLD


Cite this article as:

Alekseev К. N., Balanov А. G., Koronovskii A. A., Maksimenko V. А., Moskalenko О. I., Hramov A. E. NONLINEAR DYNAMICS OF SMALL PERTURBATION OF SEMICONDUCTOR SUPERLATTICE REFERENCE STATE NEAR GENERATION THRESHOLD. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 5, pp. 165-178. DOI: https://doi.org/10.18500/0869-6632-2012-20-5-165-178


Present research is focused on the dynamics of the perturbation of semiconductor superlattice (SL) reference state near the generation threshold as for the case of influence of titled magnetic field as for the case when the magnetic field is absent. The evolution of the considered perturbation is described with the help of linearized evolution operator. It has been shown that increase of the applied voltage leads to decrease of the attenuation coefficient, which becomes zero in bifurcation point where stationary state loses it’s stability. Meanwhile, the applied titled magnetic field has an strong effect on the perturbation dynamics, value of applied voltage corresponding to the threshold point and the frequency of arising current oscillations.

DOI: 
10.18500/0869-6632-2012-20-5-165-178
Literature

1. Esaki Leo and Tsu R. Superlattices and negative differential conductivity in semiconductors // IBM Journal of Research and Development. 1970. Vol. 14, No 1. P. 61.

2. Романов Ю.А. О нелинейных эффектах в периодических полупроводниковых структурах // Оптика и спектроскопия. 1972. Т. 33. C. 917.

3. Mourokh L.G., Horing N.J.M., Romanov Y.A., Romanova Ju.Yu. Nonlinear terahertz  oscillations in a semiconductor superlattice // Journal of Applied Physics. 2001. Vol. 89, No 7. P. 3836.

4. Horing N.J.M., Lei X.L. and Cui H.L. Theory of negative differential conductivity in a superlattice miniband // Phys Rev. Lett. 1991. Vol. 66, No 25. P. 3277.

5. Демидов Е.В. Романов Ю.А. Нелинейная проводимость и вольт-амперные характеристики двумерных полупроводниковых сверхрешеток // Физика и техника полупроводников. 1997. Т. 31, No 3. P. 308.

6. Романова Ю.Ю., Романов Ю.А. Автоколебания в полупроводниковых сверхрешетках // ЖЭТФ. 2000. Т. 118, No 5. P. 1193.

7. Greenaway M.T., Balanov A.G., Scholl E., and Fromhold T.M.  ̈ Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport // Phys. Rev. B. 2009. Vol. 80. 205318.

8. Hyart Timo, Mattas J. and Alekseev Kirill N. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices // Phys. Rev. Lett. 2010. Vol. 103, No 117401.

9. Пискарев В.И., Синицын М.А., Шашкин В.И., Явич Б.С., Яковлев М.Л., Белянцев А.М., Игнатов А.А. Новые нелинейные высокочастотные эффекты и ОДП s-типа в многослойных гетероструктурах // Письма в ЖТФ. 1986. Т. 43, No 7. P. 339.

10. Ignatov А.А. and Romanov Y.A. Nonlinear electromagnetic properties of semicon-ductors with superlattice // Phys.St. Sol. 1976. Vol. 73. P. 327.

11. Романова Ю.Ю., Романов Ю.А. Блоховские колебания в сверхрешетках. Проблема терагерцового генератора // Физика и техника полупроводников. 2005. Т. 39, No 1. C. 162.

12. Зинченко Д.И., Ноздрин Ю.Н., Андронов А.А., Додин Е.П. Транспорт в сверхрешетках gaas/alxga1-xas с узкими запрещенными мини-зонами: низкочастотная отрицательная дифференциальная проводимость и токовые осцилляции // Физика и техника полупроводников. 2009. Т. 43, No 2. C. 248.

13. Balanov A.G., Fowler D., Patane A., Eaves L., Fromhold T.M. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field // Phys. Rev. E. 2008. Vol. 77, No 2. 026209.

14. Selskii A.O., Koronovskii A.A., Hramov A.E., Moskalenko O.I., Alekseev K.N., Greenaway M.T., Wang F., Fromhold T.M., Shorokhov A.V., Khvastunov N.N., and Balanov A.G. Effect of temperature on resonant electron transport through stochastic conduction channels in superlattices // Phys. Rev. B. 2011. Vol. 84. 235311.

15. Fromhold T.M., Patane A., Bujkiewicz S., Wilkinson P.B., Fowler D., Sherwood D., Stapleton S.P., Krokhin A.A., Eaves L., Henini M., Sankeshwar N.S., and Sheard F.W. Chaotic electron diffusion through stochastic webs enhances current flow in superlattices // Nature. 2004. Vol. 428. P. 726.

16. Wacker R. Semiconductor superlattices: A model system for nonlinear transport // Physics Reports. 2002. Vol. 357. P. 1.

17. Bonilla L.L. and Teitsworth Stephen W. Nonlinear wave methods for charge transport. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010.

18. Баланов А.Г., Короновский А.А., Сельский А.О., and Храмов А.Е. Влияние температуры на дрейфовую скорость электронов в полупроводниковой сверхрешетке в продольном электрическом и наклонном магнитном полях // Известия вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 3. C. 128.

19. Wacker A. Semiconductor superlattices: A model system for nonlinear transport // Physics Reports. 2002. Vol. 357. P. 1.

20. Raspopin A.S., Zharov A.A., and Cui H.L. Spectrum of electromagnetic excitations in a dc-biased semiconductor superlattice // Journal of Applied Physics. 2005. No 98. 103517.

 

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Алексеев -IzvVUZ_AND-20-5-165,
author = {К. N. Alekseev and А. G. Balanov and A. A. Koronovskii and V. А. Maksimenko and О. I. Moskalenko and A. E. Hramov},
title = {NONLINEAR DYNAMICS OF SMALL PERTURBATION OF SEMICONDUCTOR SUPERLATTICE REFERENCE STATE NEAR GENERATION THRESHOLD},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/nonlinear-dynamics-of-small-perturbation-of-semiconductor-superlattice-reference-state-near},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-5-165-178},pages = {165--178},issn = {0869-6632},
keywords = {Spatially-­extended media,Semiconductor superlattice,perturbation of reference state,linear evolution operator,instability development.},
abstract = {Present research is focused on the dynamics of the perturbation of semiconductor superlattice (SL) reference state near the generation threshold as for the case of influence of titled magnetic field as for the case when the magnetic field is absent. The evolution of the considered perturbation is described with the help of linearized evolution operator. It has been shown that increase of the applied voltage leads to decrease of the attenuation coefficient, which becomes zero in bifurcation point where stationary state loses it’s stability. Meanwhile, the applied titled magnetic field has an strong effect on the perturbation dynamics, value of applied voltage corresponding to the threshold point and the frequency of arising current oscillations. }}