NUMERICAL SIMULATION OF THE FIELD EMISSION DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR
Cite this article as:
Benedik А. I. NUMERICAL SIMULATION OF THE FIELD EMISSION DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 63-71. DOI: https://doi.org/10.18500/0869-6632-2012-20-2-63-71
Results of the theoretical analysis of the diode oscillator with a field-emission cathode placed in a photonic crystal resonator are considered. The analysis of conditions of self-excitation in the small signal approximation is carried out. The nonstationary numerical model of the oscillator based on the nonstationary equation of excitation of the resonator and the particle-in-cell method is developed. Numerical simulation of the processes of oscillation build-up is performed. The simulation shows rather high output power and efficiency for reasonable values of cathode current density.
1. Трубецков Д.И., Рожнев А.Г., Соколов Д.В. Лекции по сверхвысокочастотной вакуумной микроэлектронике. Саратов: Изд-во ГосУНЦ «Колледж», 1996.
2. Ives R.L. Microfabrication of high-frequency vacuum electron devices // IEEE Trans. Plasma Sci. 2004. Vol. 32, No 3. P. 1277.
3. Rozhnev A.G., Ryskin N.M., Sokolov D.V., Trubetskov D.I., Han S.-T., Kim J.-I., Park G.-S. Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays // Phys. Plasmas. 2002. Vol. 9, No 9. P. 4020.
4. Han S.-T., Jeon S.-G., Shin Y.-M., Jang K.-H., So J.-K., Kim J.-H., Chang S.-S., Park G.-S. Experimental investigations on miniaturized high-frequency vacuum electron devices // IEEE Trans. Plasma Sci. 2005. Vol.33, No 2. P. 679.
5. Srivastava V. THz vacuum microelectronic devices // J. Phys.: Conf. Series. 2007. Vol. 114, No 1. 012015.
6. Ryskin N.M., Han S.-T., Jang K.-H., Park G.-S. Theory of the microelectronic traveling wave klystron amplifier with field-emission cathode array // Phys. Plasmas 2007. Vol. 14, No 9, 093106.
7. Han S.-T. A high-frequency monotron employing two-dimensional, dielectric photonic-crystal, diode resonator // 35th Int. Conf. Infrared Millim. Terahertz Waves (IRMMW-THz). Rome, Italy, 2010.
8. Han S.-T. Numerical study on radio-frequency field emission from carbon nanotube film in a photonic crystal diode resonator // J. Korean Phys. Soc. 2011. Vol. 59, No 1. P. 141.
9. Yokoo K., Ishihara T. Field emission monotron for THz emission // Int. J. Infrared Millim. Waves. 1997. Vol. 18, No 6. P. 1151.
10. Солнцев В.А., Галдецкий А.В., Клеев А.И. Приборы вакуумной СВЧ микроэлектроники со средним углом пролета // Лекции по СВЧ электронике и радиофизике. 10-я зимняя школа-семинар. Кн. 1, Ч. I. Саратов: Изд-во ГосУНЦ «Колледж», 1996. С. 76.
11. Солнцев В.А. Нелинейные явления в вакуумных микроэлектронных структурах // Изв. вузов. Прикладная нелинейная динамика. 1998. Т. 6, No 1. С. 54.
12. Sirigiri J.R., Kreischer K.E., Machuzak J., Mastovsky I., Shapiro M.A., Temkin R.J. Photonic-band-gap resonator gyrotron // Phys. Rev. Lett. 2001. Vol. 86, No 24. P. 5628.
13. Jeon S.-G., Shin Y.-M., Jang K.-H., Han S.-T., So J.-K., Joo Y.-D., Park G.-S. High order mode formation of externally coupled hybrid photonic-band-gap cavity // Appl. Phys. Lett. 2007. Vol. 90, No 2. 021112.
14. Jang K.-H., Jeon S.-G., Kim J.-I., Won J.-H., So J.-K., Bak S.-H., Srivastava A., Jung S.-S., Park G.-S. High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron // Appl. Phys. Lett. 2008. Vol. 93, No 21. 211104.
15. Liu X., Lei H., Yu T., Feng J., Liao F. Characteristics of terahertz slow-wave system with two-dimensional photonic band-gap structure // Optics Communications. 2008. Vol. 281, No 1. P. 102.
16. Gong Y., Yin H., Wei Y., Yue L., Deng M., Lu Zh., Xu X., Wang W., Liu P., Liao F. Study of traveling wave tube with folded-waveguide circuit shielded by photonic crystals // IEEE Trans. Electron Devices. 2010. Vol. 57, No 5. P. 1137.
17. Шевчик В.Н. Основы электроники сверхвысоких частот. М.: Сов. радио, 1959.
18. Гайдук В.И., Палатов К.И., Петров Д.М. Физические основы электроники сверхвысоких частот. М.: Сов. радио, 1971.
19. Вайнштейн Л.А., Солнцев В.А. Лекции по сверхвысокочастотной электронике. М.: Сов. радио, 1973.
20. Шевчик В.Н., Трубецков Д.И. Аналитические методы расчета в электронике СВЧ. М.: Сов. радио, 1970.
21. Бэдсел Ч., Ленгдон А. Физика плазмы и численное моделирование / Пер. с англ. М.: Атомиздат, 1989.
22. Титов В.Н., Волков Д.В., Яковлев А.В., Рыскин Н.М. Отражательный клистрон как пример автоколебательной системы с запаздыванием // Изв. вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 6. С. 138.
23. Ryskin N.M., Titov V.N., Yakovlev A.V. Nonstationary nonlinear discrete model of a coupled-cavity traveling-wave-tube amplifier // IEEE Trans. Electron Devices. 2009. Vol. 56, No 5. P. 928.
24. Вайнштейн Л.А., Вакман Д.Е. Разделение частот в теории колебаний и волн. М.: Наука, 1983.
25. Milne W.I., Teo K.B.K., Minoux E., et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers // J. Vac. Sci. Technol. B. 2006. Vol. 24, No 1. P. 345.
26. Calderon-Colon X., Geng H., Gao D., An L., Cao G., Zhou O. A carbon nanotube field emission cathode with high current density and long-term stability // Nano-technology. 2009. Vol. 20, 325707.
27. Shiffler D., Zhou O., Bower C., LaCour M., Golby K. A high-current, large-area, carbon nanotube cathode // IEEE Trans. Plasma Sci. 2004. Vol. 32, No 5. P. 2152.
BibTeX
author = {А. I. Benedik},
title = {NUMERICAL SIMULATION OF THE FIELD EMISSION DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/numerical-simulation-of-the-field-emission-diode-oscillator-with-photonic-crystal-resonator},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-2-63-71},pages = {63--71},issn = {0869-6632},
keywords = {Keywords: Vacuum microelectronics,field emission,photonic crystal resonator,particle-in-cell simulation.},
abstract = {Results of the theoretical analysis of the diode oscillator with a field-emission cathode placed in a photonic crystal resonator are considered. The analysis of conditions of self-excitation in the small signal approximation is carried out. The nonstationary numerical model of the oscillator based on the nonstationary equation of excitation of the resonator and the particle-in-cell method is developed. Numerical simulation of the processes of oscillation build-up is performed. The simulation shows rather high output power and efficiency for reasonable values of cathode current density. }}