PERIOD DOUBLING BIFURCATIONS AND NOISE EXCITATION EFFECTS IN A MULTISTABLE SELF-SUSTAINED OSCILLATORY MEDIUM
Cite this article as:
Slepnev А. V., Vadivasova Т. Е. PERIOD DOUBLING BIFURCATIONS AND NOISE EXCITATION EFFECTS IN A MULTISTABLE SELF-SUSTAINED OSCILLATORY MEDIUM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 4, pp. 53-67. DOI: https://doi.org/10.18500/0869-6632-2011-19-4-53-67
The model of a self-oscillatory medium composed from the elements with complex self-oscillatory behavior is studied. Under periodic boundary conditions the stable self-oscillatory regimes in the form of traveling waves with different phase shifts are coexisted in medium. The study of mechanisms of the oscillations period doubling in time is performed for different coexisted modes. For all observed spatially-non-uniform regimes (traveling waves) the period doubling occurs through the appearance of time-quasiperiodic oscillations and their further evolution. The period doubling result in multistability development. For each mode with the given phase shift the different stable non-uniform structures, which are differed by the distribution of oscillations characteristics in space, emerge. The influence of a noise signal leads to the shift of doubling bifurcation in the direction of the control parameter increasing. When the value of control parameter is fixed the stochastic bifurcations of contingency, which are shown in reduction of extremes numbers in the probabilistic distribution, are observed with the increasing of noise intensity. When the noise is sufficiently great the spatially-non-uniform modes corresponding to nonzero phase shifts disappear.
1. Гапонов-Грехов А.В., Рабинович М.И. Уравнение Гинзбурга–Ландау и нелинейная динамика неравновесных сред // Известия высших учебных заведений. Радиофизика. 1987. Т. 32, No 2. С. 131.
2. Aranson I.S., Kramer L. The world of the complex Ginzburg–Landau equation // Reviews of Modern Physics. 2002. Vol. 74, No 1. P. 99.
3. Osipov G.V., Pikovsky A.S., Rosenblum M.G., Kurths J. Phase synchronization effects in a lattice of nonidentical Rossler oscillators // Physical Review E. 1997. Vol. 55, ̈ No 3. P. 2353.
4. Shabunin A.V., Feudel U., Astakhov V.V. Phase multistability, phase synchronization in an array of locally coupled period-doubling oscillators // Physical Review E. 2009. Vol. 80, No 2. P. 026211.
5. Belykh V.N., Verichev N.N., Kocarev L., Chua L.O. On chaotic synchronization in a linear array of Chua’s circuits // Journal of Circuits, Systems, Computers. 1993. Vol. 3, No 2. P. 579.
6. Shabunin A.V., Astakhov V.V., Anishchenko V.S. Developing chaos on base of traveling waves in a chain of coupled oscillators with period-doubling: synchronization, hierarchy of multistability formation // International Journal of Bifurcation, Chaos. 2002. Vol. 12, No 8. P. 1895-.
7. Анищенко В.С., Арансон И.С., Постнов Д.Э., Рабинович М.И. Пространственная синхронизация и бифуркации развития хаоса в цепочке связанных генераторов // Доклады Академии Наук СССР. 1986. Т. 286, No 5. С. 1120.
8. Kaneko K. Spatiotemporal Chaos in one-, two-dimensional coupled map lattices // Physica D. 1989. Vol. 37, No 1-3. P. 60.
9. Кузнецов А.П., Кузнецов С.П. Критическая динамика решеток связанных отображений у порога хаоса // Известия высших учебных заведений. Радиофизика. 1991. Т. 34, No 10–12. С. 1079.
10. Garc ́ıa-Ojalvo J., Sancho J.M. Noise in spatially extended systems. New York: Springer. 1999. P. 307.
11. Garc ́ıa-Ojalvo J., Hernandez-Machado A., Sancho J.M. ́ Effects of external noise on the Swift–Hohenberg equation // Physical Review Letters. 1993. Vol. 71, No 10. P. 1542.
12. Cross M.C., Hohenberg P.C. Pattern formation outside of equilibrium // Reviews of Modern Physics. 1993. Vol. 65, No 3. P. 851.
13. Vinals J., Hern ̃ andez-Garca E., Miguel M.S., Toral R. ́ Numerical study of the dynamical aspects of pattern selection in the stochastic Swift-Hohenberg equation in one dimension // Physical Review A. 1991.Vol. 44, No 2. P. 1123.
14. Kuznetsov S.P. Noise-induced absolute instability // Mathematics, Computers in Simulation. 2002. Vol. 58, No 4–6. P. 435.
15. Anishchenko V.S., Akopov A.A., Vadivasova T.E., Strelkova G.I. Mechanisms of chaos onset in an inhomogeneous medium under cluster synchronization destruction // New Journal of Physics. 2006. Vol. 8, No 6. P. 84.
16. Hramov A.E., Koronovskii A.A., Popov P.V. Incomplete noise-induced synchronization of spatially extended systems // Physical Review E. 2008. Vol. 77, No 3. P. 036215.
17. Шабунин А.В., Акопов А.А., Астахов В.В., Вадивасова Т.Е. Бегущие волны в дискретной ангармонической автоколебательной среде // Известия вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 4. С. 37.
18. Анищенко В.С., Астахов В.В. Экспериментальное исследование механизма возникновения и структуры странного аттрактора в генераторе с инерционной нелинейностью // Радиотехника и электроника. 1983. Т. 28, No 6. С. 1109.
19. Анищенко В.С. Сложные колебания в простых системах. Москва: Наука, 1990. С. 312.
20. Anishchenko V.S., Vadivasova T.E., Strelkova G.I. Instantaneous phase method in studying chaotic, stochastic oscillations and its limitations // Fluctuation, Noise Letters. 2004. Vol. 4, No 1. P. L219.
21. Pecora L.M. Synchronization conditions, desynchronizing patterns in coupled limitcycle, chaotic systems // Physical Review E. 1998. Vol. 58, No 1. P. 347.
22. Астахов В.В., Безручко Б.П., Гуляев Ю.В., Селезнев Е.П. Мультистабильные состояния диссипативно-связанных фейгенбаумовских систем // Письма в Журнал Технической Физики. 1988. Т. 15, No 3. С. 60.
23. Астахов В.В., Безручко Б.П., Пономаренко В.И. Формирование мультистабильности, классификация изомеров и их эволюция в связанных фейгенбаумовских системах // Известия высших учебных заведений. Радиофизика. 1991. Т. 34, No 1. С. 35.
24. Слепнев А.В., Вадивасова Т.Е., Листов А.С. Мультистабильность, удвоения периода и подавление бегущих волн шумовым воздействием в нелинейной авто-колебательной среде с периодическими граничными условиями // Нелинейная Динамика. 2010. Т. 6, No 4. C. 755.
25. Слепнев А.В. Фазовая мультистабильность и влияние локального источника шума в модели автоколебательной среды. Нелинейные дни в Саратове для молодых – 2009: Сборник материалов научной школы-конференции. Саратов: ООО ИЦ «Наука», 2010. C. 94.
26. Svensmark H., Samuelsen M.R. Perturbed period-doubling bifurcation. I. Theory // Physical Review B. 1990. Vol. 41, No 7. P. 4181.
27. Arnold L. Random Dynamical Systems. Berlin: Springer. 2003. P. 586.
BibTeX
author = {А. V. Slepnev and Т. Е. Vadivasova },
title = {PERIOD DOUBLING BIFURCATIONS AND NOISE EXCITATION EFFECTS IN A MULTISTABLE SELF-SUSTAINED OSCILLATORY MEDIUM},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/period-doubling-bifurcations-and-noise-excitation-effects-in-multistable-self-sustained},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-4-53-67},pages = {53--67},issn = {0869-6632},
keywords = {Self-oscillatory medium,multistability,period doubling,spatial structures,stochastic bifurcation,P-bifurcation,noise.},
abstract = { The model of a self-oscillatory medium composed from the elements with complex self-oscillatory behavior is studied. Under periodic boundary conditions the stable self-oscillatory regimes in the form of traveling waves with different phase shifts are coexisted in medium. The study of mechanisms of the oscillations period doubling in time is performed for different coexisted modes. For all observed spatially-non-uniform regimes (traveling waves) the period doubling occurs through the appearance of time-quasiperiodic oscillations and their further evolution. The period doubling result in multistability development. For each mode with the given phase shift the different stable non-uniform structures, which are differed by the distribution of oscillations characteristics in space, emerge. The influence of a noise signal leads to the shift of doubling bifurcation in the direction of the control parameter increasing. When the value of control parameter is fixed the stochastic bifurcations of contingency, which are shown in reduction of extremes numbers in the probabilistic distribution, are observed with the increasing of noise intensity. When the noise is sufficiently great the spatially-non-uniform modes corresponding to nonzero phase shifts disappear. }}