WAVELET ANALYSIS OF SLEEP SPINDLES ON EEG AND DEVELOPMENT OF METHOD FOR THEIR AUTOMATIC DIAGNOSTIC
Cite this article as:
Grubov V. V., Ovchinnikov А. А., Sitnikova Е. Y., Koronovskii A. A., Hramov A. E. WAVELET ANALYSIS OF SLEEP SPINDLES ON EEG AND DEVELOPMENT OF METHOD FOR THEIR AUTOMATIC DIAGNOSTIC. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 4, pp. 91-108. DOI: https://doi.org/10.18500/0869-6632-2011-19-4-91-108
The detailed wavelet analysis of sleep electric brain activity, obtained from rats with genetic predisposition to absence-epilepsy, has been performed. Characteristic features of time-and-frequency structure of sleep spindles (oscillatory pattern, that serve as electroencephalographic correlate for slow-wave sleep) have been discovered in long-term electroencephalographic data. Operation has been performed using continuous wavelet transform. Few common wavelet bases have been tested and complex Morlet-wavelet turned out to be the most effective for detection of time-and-frequency features of sleep spindles on EEG. Morlet-wavelet has been used for development of system for automatic diagnostic of sleep spindles on EEG. As a result of analysis two types of sleep spindles, that have the same time dynamics, but different frequency structure, have been discovered. Complex dynamics of main frequency during the sleep spindle has been revealed. The method for automatic diagnostic of sleep spindles, based on computation of wavelet transform energy in two frequency ranges for two types of sleep spindles, has been proposed according to obtained data. The testing of method revealed high accuracy of automatic diagnostic for investigating events on EEG. The method can be used in routine EEG researches, related to detection and classification of different oscillatory patterns.
1. Абарбанель Г.Д.И., Рабинович М.И., Селверстон А. и др. Синхронизация в нейронных ансамблях // Успехи физических наук. 1996. Т. 166. С. 363.
2. Mosekilde E., Maistrenko Yu., Postnov D.E. Chaotic synchronization, applications to living systems. Singapore: World Scientific. 2002.
3. Безручко Б.П., Пономаренко В.И., Прохоров и др. Моделирование и диагностика взаимодействия нелинейных колебательных систем по хаотическим временным рядам (приложения в нейрофизиологии) // Успехи физических наук. 2008. Т. 178. С. 323.
4. Некоркин В.И. Нелинейные колебания и волны в нейродинамике // Успехи физических наук. 2008. Т. 178. С. 313.
5. Steriade M., Deschenes M. The thalamus as a neuronal oscillator // Brain Res. Rev. 1984. Vol. 8. P. 1.
6. Destexhe A., Sejnowski T.J. Thalamocortical assemblies: How ion channels, single neurons and large-scale networks organize sleep oscillations. Oxford University Press, 2001.
7. Niedermeyer E., Silva F.L. Electroencephalography: Basic principles, clinical applications, and related fields. Lippincot Williams & Wilkins. 2004.
8. Nunez P.L., Srinivasan R. Electric fields of the brain: The neurophysics of EEG. Oxford University Press, 1981.
9. Kostopoulos G.K. Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis // Clinical Neurophysiology. 2000. Vol. 111. Suppl 2. S27–38.
10. Holschneider M. Wavelets: An analysis tool. Oxford University Press, 1995.
11. Aldroubi A., Unser M. Wavelets in medicine and biology. CRC-Press, 1996.
12. Daubechies I. Orthonormal bases of compactly supported wavelets // Communications on Pure and Applied Mathematics. 1988. Vol. 41. P. 909.
13. Tass P.A. et al. Detection of n:m phase locking from noisy data: Application to magnetoencephalography // Phys. Rev. Lett. 1998. Vol. 81. P. 3291.
14. Tass P.A., Fieseler T., Dammers J. et al. Synchronization tomography: A method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography // Phys. Rev. Lett. 2003. Vol. 90, P. 088101.
15. Anishchenko V.S., Balanov A.G., Janson N.B. et al. Entrainment between heart rate and weak noninvasive forcing // Int. J. Bifurcation and Chaos. 2000. Vol. 10. P. 2339.
16. Prokhorov M.D., Ponomarenko V.I., Gridnev V.I. et al. Synchronization between main rhythmic processes in the human cardiovascular system // Phys. Rev. E. 2003. Vol. 68. P. 041913.
17. Hramov A.E., Koronovskii A.A., Ponomarenko V.I., Prokhorov M.D. Detecting synchronization of self-sustained oscillators by external driving with varying frequency // Phys. Rev. E. 2006. Vol. 73. P. 026208.
18. Короновский А.А., Пономаренко В.И., Прохоров М.Д., Храмов А.Е. Метод исследования синхронизации автоколебаний по унивариантным данным с использованием непрерывного вейвлетного анализа // ЖТФ. 2007. T. 77, No 9. С. 6.
19. Meinecke F.C., Ziehe A., Kurths J., Muller K.-R. ̈ Measuring phase synchronization of superimposed signals // Phys. Rev. Lett. 2005. Vol. 94. P. 084102.
20. Chavez M., Adam C., Navarro V. et al. On the intrinsic time scales involved in synchronization: A data-driven approach // Chaos. 2005. Vol. 15. P. 023904.
21. Velazquez J.L.P., Khosravani H., Lozano A. et al. Type III intermittency in human partial epilepsy // European Journal of Neuroscience. 1999. Vol. 11. P. 2571.
22. Короновский А.А., Кузнецова Г.Д., Мидзяновcкая И.С., Ситникова Е.Ю., Трубецков Д.И., Храмов А.Е. Закономерности перемежающегося поведения в спонтанной неконвульсивной судорожной активности у крыс // ДАН. 2006. T. 409. C. 274.
23. Hramov A.E., Koronovskii A.A., Midzyanovskaya I.S. et al. On–off intermittency in time series of spontaneous paroxysmal activity in rats with genetic absence epilepsy // Chaos. 2006. Vol. 16. P. 043111.
24. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // American Journal of Physiology (Renal Physiology). 2007. Vol. 293. P. F1545.
25. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H. Synchronization phenomena in multimode dynamics of coupled nephrons // Известия вузов. Прикладная нелинейная динамика. 2003. T. 11, No3. C. 133.
26. Короновский А.А., Минюхин И.М., Тыщенко А.А., Храмов А.Е., Мидзяновская И.С., Ситникова Е.Ю., ван Луйтелаар Ж., ван Рижн С.М. Применение непрерывного вейвлет-преобразования для анализа перемежающегося поведения // Изв. вузов. Прикладная нелинейная динамика. 2007. T. 15, No4. C. 34.
27. Ovchinnikov A.A., Luttjohann A., Hramov A.E., van Luijtelaar G. An algorithm for real-time detection of spike-wave discharges in rodents // Journal of Neuroscience Methods. 2010. Vol. 194. P. 172.
28. Овчинников А.А., Храмов А.Е., Люттьеханн А., Короновский А.А., ван Луйтелаар Ж. Метод диагностики характерных паттернов на наблюдаемых временных рядах и его экспериментальная реализация в режиме реального времени применительно к нейрофизиологическим сигналам // ЖТФ. 2011. T. 81. C. 3.
29. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003.
30. Coenen A.M., van Luijtelaar E.L. Pharmacological dissociation of EEG and behavior: A basic problem in sleep-wake classification // Sleep. 1991. Vol. 14. P. 464.
31. Mallat S.G. Multiresolution approximations and wavelets orthonormal bases of 2 (R) // Trans. Amer. Soc. 1989. Vol. 315. P. 69. L
32. Paul T. Function analitic on half-plane as quantum mechanical states // J. Math. Phys. 1984. Vol. 24. P. 136.
33. Grossman A., Morlet J. Decomposition of hardly functions into square integrable wavelets of constant shape // SIAM J. Math. Anal. 1984. Vol. 15, No 4. P. 273.
34. Sitnikova E.Yu., Hramov A.E., Koronovskii A.A., van Luijtelaar G. Sleep spindles and spike–wave discharges in EEG: Their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis // Journal of Neuroscience Methods. 2009. Vol. 180. P. 304.
35. Sitnikova E., van Luijtelaar G. Cortical and thalamic coherence during spike-wave seizures in WAG/Rij rats // Epilepsy Res. 2006. Vol. 71. P. 159.
36. Абдуллаев Н.Т., Дышин О.А., Самедова Х.З. Автоматическая классификация электроэнцефалограмм на основе их вейвлет-пакетной обработки // Биомедицинская радиоэлектроника. 2009. No 6. C. 45.
37. Абдуллаев Н.Т., Дышин О.А., Самедова Х.З. Вейвлетная очистка электроэнцефалограмм от артефактов с адаптацией к их виду и динамике // Биомедицинская радиоэлектроника. 2009. No 12. C. 34.
38. Божокин С.В., Суворов Н.Б. Вейвлет-анализ переходных процессов электро-энцефалограммы при фотостимуляции // Биомедицинская радиоэлектроника. 2008. No 3. C. 85.
39. Pearson E.S., Neyman J. On the problem of two samples. Joint Statistical Papers, Cambridge University Press, Cambridge, 1967
40. Raiffa H. Decision analysis: Introductory lectures on choices under uncertainty. Addison-Wesley, Reading, 1968.
41. van Luijtelaar G., Hramov A.E., Sitnikova E.Yu., Koronovskii A.A. Spike-wave discharges in WAG/Rij rats are preceeded by delta and theta precursor activity in cortex and thalamus // Clinical Neurophysiology. 2011. Vol. 122. P. 687.
BibTeX
author = {V. V. Grubov and А. А. Ovchinnikov and Е. Yu. Sitnikova and A. A. Koronovskii and A. E. Hramov},
title = {WAVELET ANALYSIS OF SLEEP SPINDLES ON EEG AND DEVELOPMENT OF METHOD FOR THEIR AUTOMATIC DIAGNOSTIC},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/wavelet-analysis-of-sleep-spindles-on-eeg-and-development-of-method-for-their-automatic},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-4-91-108},pages = {91--108},issn = {0869-6632},
keywords = {continuous wavelet transform,EEG,epilepsy,oscillatory pattern,sleep spindles,diagnostic.},
abstract = {The detailed wavelet analysis of sleep electric brain activity, obtained from rats with genetic predisposition to absence-epilepsy, has been performed. Characteristic features of time-and-frequency structure of sleep spindles (oscillatory pattern, that serve as electroencephalographic correlate for slow-wave sleep) have been discovered in long-term electroencephalographic data. Operation has been performed using continuous wavelet transform. Few common wavelet bases have been tested and complex Morlet-wavelet turned out to be the most effective for detection of time-and-frequency features of sleep spindles on EEG. Morlet-wavelet has been used for development of system for automatic diagnostic of sleep spindles on EEG. As a result of analysis two types of sleep spindles, that have the same time dynamics, but different frequency structure, have been discovered. Complex dynamics of main frequency during the sleep spindle has been revealed. The method for automatic diagnostic of sleep spindles, based on computation of wavelet transform energy in two frequency ranges for two types of sleep spindles, has been proposed according to obtained data. The testing of method revealed high accuracy of automatic diagnostic for investigating events on EEG. The method can be used in routine EEG researches, related to detection and classification of different oscillatory patterns. }}