ACTIVITY SYNCHRONIZATION OF DIFFERENT NEURON TYPES IN THE COLUMNS OF THE CEREBRAL VISUAL CORTEX


Cite this article as:

Podladchikova L. N., Tikidji-Hamburyan R. А., Tikidji-Hamburyan А. V., Shevtsova N. А., Vasilkov V. А., Belova Е. I., Ischenko I. А. ACTIVITY SYNCHRONIZATION OF DIFFERENT NEURON TYPES IN THE COLUMNS OF THE CEREBRAL VISUAL CORTEX. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 6, pp. 83-95. DOI: https://doi.org/10.18500/0869-6632-2011-19-6-83-95


The results of neurophysiological and modeling studies focused on activity synchronization among of different types of neurons and spike shape dynamics in two bistability transition states have been presented. In modeling study, spike duration range of «fast» or «slow» neurons recorded in neurophysiological experiments were simulated. While simulation of model element groups with different properties of short­term and long­term activity dynamics, it was revealed that degree of their activity synchronization depend on frequency and power of input influences; it was maximal at high frequency of super threshold input signals. Possible approach to the study of column functioning mechanisms and dynamics operations inside the columns have been considered.

DOI: 
10.18500/0869-6632-2011-19-6-83-95
Literature

1. Коган А.Б. Функциональная организация нейронных механизмов мозга. Л.: Медицина, 1979. 224 c.

2. Хьюбел Д. Глаз, мозг, зрение. М.: Мир, 1990. 239 c.

3. Hubel D.H., Wiesel T.N. Shape and arrangement of columns in cat‘s visual cortex // J. Physiology. 1963. Vol. 165. P. 559.

4. Mountcastle V.B. The columnar organization of the neocortex // Brain. 1997. No 120. P. 701.

5. Freeman M. Cortical columns: a multi–parameter examination // Cerebral cortex. 2003. No 13. P. 70.

6. Hirsch J.A., Martinez L.M. Laminar processing in the visual cortical column // Current Opinion in Neurobiology. 2006. No 16. P. 377.

7. Horton J.C., Adams D.L. The cortical column: a structure without a function // Phil. Trans. Roy. Soc. B. 2005. No 360. P. 386.

8. Katzel D., Zemelman B.V., Buetfering C., Wolfel M., Miesenbock G. The columnar and laminar organization of inhibitory connections to neocortical excitatory cells // Nature Neuroscience, Advance online publication, published 14 November 2010; doi:10.1038/nn.2687.

9. Szentagothai J. The neuron network of the cerebral cortex: A functional interpretation // Proc. R. Soc. Lond. Series B. 1978, Vol. 201, No. 1144. P. 219.

10. Compte A., Sanchez-Vives M. V., McCormick D. A., Wang X.-J. Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model // J. Neurophysiol. 2003. P. 2707.

11. Eckhorn R., Bauer R., Jordon W., Brosch M., Kruse W., Munk M., Reitboeck H.J. Coherent oscillations: a mechanisms of feature linking the visual cortex // Biol. Cyb. 1988. Vol. 60. P. 121.

12. Gray Sh.M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of visual cortex // PNAS. 1989. Vol. 86, No 5. P. 1698.

13. Hopfield J.J., Brody C.D. What is moment? Transient synchrony as a collective mechanism for spatio-temporal integration // PNAS. 2001. Vol. 98. No 3. P. 1282.

14. Подладчикова Л.Н., Тикиджи-Хамбурьян Р.А., Бондарь Г.Г., Гусакова В.И., Ивлев С.А., Дунин-Барковский В.Л. Временная динамика активности «быстрых» и «медленных» нейронов зрительной коры мозга и мозжечка // Нейро-компьютеры: разработка и применение. 2004. No 11. C. 50.

15. Подладчикова Л.Н., Колтунова Т.И., Белова Е.И., Тикиджи-Хамбурьян Р.А., Ищенко И.А., Шапошников Д.Г. Нейроинформационный подход к исследованию нейронных и системных механизмов зрительного восприятия // Нейроин-форматика – 2011. Лекции по нейроинформатике: XIII Всерос. научн-технич. конф. М.: НИЯУ МИФИ, 2011. C. 185.

16. Nowak L.G., Azouz R., Sanchez-Vives M.V., Gray C.M., McCormick D.A. Electro-physiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses // J. Neurophysiology. 2003. Vol. 89. P. 1541.

17. Orban G.A. Neuronal Operations in the Visual Cortex. Studies of Brain Function. Berlin–Heidelberg; N-Y; Tokyo, 1984. 367 p.

18. Markin S.N., Podladchikova L.N., and Dunin-Barkowski W.L. Method to detect impulses of various duration generated by Purkinje cells of cerebellar cortex // Pattern Recognition and Image Analysis. 2005. Vol. 15, No 4. P. 672.

19. Hodgkin A., Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiology. 1952. Vol. 117. P. 500.

20. Тикиджи-Хамбурьян Р.А. Модифицированный импульсный нейрон как базовая модель для реальных нейронных сетей // Нейрокомпьютеры: разработка и применение. 2002. No 7–8. C. 97.

21. Wang X.-J., Liu Y., Sanches-Vives M.V., McCormick D.A. Adaptation and temporal decorrelation by single neuron in the primary visual cortex // J. Neurophysiology. 2003. Vol. 89. P. 3279.

22. Тикиджи-Хамбурьян Р.А. Модификация генетического алгоритма на основе элитарного отбора для поиска параметров биологически обоснованных моделей нейронов. // Нейроинформатика, электронный рецензируемый журнал. 2008. T.3. No 1. C. 1.

23. Подладчикова Л.Н., Тикиджи-Хамбурьян Р.А., Бондарь Г.Г., Ивлев С.А., Дунин- Барковский В.Л. Особенности периодов квазиритмической активности «быстрых» и «медленных» нейронов зрительной коры и мозжечка: эксперимент и модель//Мат. XIV межд. конф. по нейрокиберн., 27–30 сентября 2005. Ростов-н/Д: Издательство ООО «ЦВВР», 2005, т. 2. 132 c.

24. Anderson J., Lampl I., Reichova I., Carandini M. Ferster D. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex // Nature Neuro-

science. 2000. Vol. 3. P. 617.

25. Подладчикова Л.Н., Бондарь Г.Г., Ивлев С. А.,Тикиджи-Хамбурьян Р. А., Дунин-Барковский В.Л. Динамика активности клеток Пуркинье мозжечка при изменении длительности сложных импульсов // Биофизика. 2008. T. 53, вып. 3. C. 488.

26. Helmstaedter M.,. de Kock C.P.J, Feldmeyer D., Bruno R.M., Sakmann B. Reconst-ruction of an average cortical column in silico // Brain Res. Rew. 2007. Vol. 55. P. 193.

27. The Blue Brain Project. http://bluebrain.epfl.ch/

28. Thomson A.M.,. Armstrong W.E. Biocytin-labelling and its impact on late 20th century studies of cortical circuitry // Brain Res. Rew. 2011. Vol. 66. P. 43.

29. Silberberg G., Wu C., Markram H. Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit // J. Physiol. 2004. Vol. 556. 1. P. 19.

 

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Подладчикова -IzvVUZ_AND-19-6-83,
author = {L. N. Podladchikova and R. А. Tikidji-Hamburyan and А. V. Tikidji-Hamburyan and N. А Shevtsova and V. А. Vasilkov and Е. I. Belova and I. А. Ischenko},
title = {ACTIVITY SYNCHRONIZATION OF DIFFERENT NEURON TYPES IN THE COLUMNS OF THE CEREBRAL VISUAL CORTEX},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/activity-synchronization-of-different-neuron-types-in-the-columns-of-the-cerebral-visual},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-6-83-95},pages = {83--95},issn = {0869-6632},
keywords = {Visual cortex,columns,«fast» and «slow» cells,bistability,spike shape dynamics,activity synchronization,neurophysiological study and simulation.},
abstract = {The results of neurophysiological and modeling studies focused on activity synchronization among of different types of neurons and spike shape dynamics in two bistability transition states have been presented. In modeling study, spike duration range of «fast» or «slow» neurons recorded in neurophysiological experiments were simulated. While simulation of model element groups with different properties of short­term and long­term activity dynamics, it was revealed that degree of their activity synchronization depend on frequency and power of input influences; it was maximal at high frequency of super threshold input signals. Possible approach to the study of column functioning mechanisms and dynamics operations inside the columns have been considered. }}