MODELLING OF DYNAMIC PROCESSES WITH PIECEWISE LINEAR CHARACTERISTICS
Cite this article as:
Alyukov S. V. MODELLING OF DYNAMIC PROCESSES WITH PIECEWISE LINEAR CHARACTERISTICS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 27-34. DOI: https://doi.org/10.18500/0869-6632-2011-19-5-27-34
Some problems of modelling of dynamic systems with piecewise linear characteristics are considered. New methods of approximation of the piecewise linear functions, in particular, step functions without disadvantages of the traditional Fourier series expansions are suggested. Some questions of convergence and error estimation of the approximation are explored.
1. Helmberg G. The Gibbs phenomenon for Fourier interpolation // J. Approx. Theory. 1994. Vol. 78. P. 41.
2. Жук В.В., Натансон Г.И. Тригонометрические ряды Фурье и элементы теории аппроксимации. Л.: Изд-во Ленингр. ун-та, 1983. 188 с.
3. Алюков С.В. Аппроксимация ступенчатых функций в задачах математического моделирования // Математическое моделирование. 2011. T. 23, No 3. C. 75.
4. Алюков С.В. Динамика инерционного трансформатора вращающего момента без механизмов свободного хода. Владимир: ВПИ, 1983, автореферат диссертации... канд. техн. наук.
BibTeX
author = {S. V. Alyukov},
title = {MODELLING OF DYNAMIC PROCESSES WITH PIECEWISE LINEAR CHARACTERISTICS},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/modelling-of-dynamic-processes-with-piecewise-linear-characteristics},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-5-27-34},pages = {27--34},issn = {0869-6632},
keywords = {Modelling,approximation,piecewise linear functions,convergence,error of approximation.},
abstract = {Some problems of modelling of dynamic systems with piecewise linear characteristics are considered. New methods of approximation of the piecewise linear functions, in particular, step functions without disadvantages of the traditional Fourier series expansions are suggested. Some questions of convergence and error estimation of the approximation are explored. }}