RECTANGULAR PULSE COMPRESSION IN LINEAR DISPERSIVE MEDIA
Cite this article as:
Galishnikov А. А., Kozhevnikov А. V., Filimonov Y. А. RECTANGULAR PULSE COMPRESSION IN LINEAR DISPERSIVE MEDIA. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 1, pp. 63-78. DOI: https://doi.org/10.18500/0869-6632-2005-13-1-63-78
Based on the parabolic differential equation solution behaviour of the pulse width at half-height in linear second order dispersion media was analyzed. It was shown that rectangular non-chirped pulse width varies non-monotonously with distance and reaches 50–60% initial width at compression length that is equal to 0.44 dispersive length. This compression was shown to be caused by dispersive pulse-edges perturbations that lead to frequency chirp on pulse top. The results of experiment with non-chirped rectangular surface magnetostatic wave pulses in yttrium iron garnet film are presented and are in qualitative agreement with the theoretical results.
1. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1990.
2. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988.
3. Сухоруков А.П. Оптика сверхкоротких импульсов // Соросовский образовательный журнал. Физика. 1997.
4. Вайнштейн Л.А. Распространение импульсов // УФН. 1976. Т. 118, вып. 2. C. 339.
5. Agrawal G.P., Potasek M.J. Effect of frequency chirping on the performance of optical communication systems // Optics Letters. 1986. Vol. 11, No5. P. 318.
6. Anderson D., Lisak M. Propagation characteristics of frequency-chirped super-Gaussian optical pulses // Optics Letters. 1986. Vol. 11, No 9. P. 569.
7. Iwashita K., Nakagawa K., Nakano Y., Suzuki Y. Chirp pulse transmission through a single-mode fibre//Electronics Lett. 1982. Vol. 18, No 20. P. 873.
8. Kalinikos B.A., Kovshikov N.G., Slavin A.N. Observation of dipole spin wave envelope solitons in ferromagnetics films // IEEE Trans. on magnetics. 1990. Vol. 26, No5. P. 1477.
9. Кудинов Е.В., Шабунин А.П. Прохождение сигналов в линии задержки на основе магнитостатических волн (МСВ) //Радиотехнические устройства. Киевск. политехн. ин-т, 1987. С.4.
10. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Наука, 1994.
11. Медведев В.В., Фетисов Ю.К. Вопросы кибернетики. Устройства и системы. М.: МИРЭА, 1983. С.171.
12. Костылев М.П., Ковшиков Н.Г. Возбуждение, формирование и распространение солитоноподобных импульсов спиновых волн в феромагнитных пленках (численный расчет и эксперимент) // ЖТФ. 2002. Т. 72, вып.11. C. 5.
13. Synogach V.T., Fetisov Yu.K., Mathieu Ch., Patton C.E. Ultra short magnetostatic surface wave pulse formation due to three magnon splitting // IEEE Intermag. Canada, Toronto 9-13 April 2000. Р. GC-06.
14. Filimonov Yu.A., Marcelli R., Nikitov S.A. Non-linear magnetostatic surface waves pulse propagation in ferrite-dielectric-metal structure // IEEE Trans. on magn. 2002, September. Vol. 38, No5. P. 3105.
15. Казаков Г.Т., Кожевников А.В., Филимонов Ю.А. Четырехмагнонный распад поверхностных магнитостатических волн в пленках железоиттриевого граната // ФТТ. 1998. Т. 39. C. 330.
16. Чиркин В.И., Шильников Ю.Р., Челищев Н.И. Время возбуждения спиновых волн для нелинейных процессов первого и второго порядков //ФТТ. 1968. Т. 10, вып.6. C. 1876.
17. Звездин А.К., Попков А.Ф. К нелинейной теории магнитостатических спиновых волн // ЖЭТФ. 1983. Т. 84, вып.2. C. 606.
BibTeX
author = {А. А. Galishnikov and А. V. Kozhevnikov and Yu. А. Filimonov },
title = {RECTANGULAR PULSE COMPRESSION IN LINEAR DISPERSIVE MEDIA},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/rectangular-pulse-compression-in-linear-dispersive-media},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-1-63-78},pages = {63--78},issn = {0869-6632},
keywords = {-},
abstract = {Based on the parabolic differential equation solution behaviour of the pulse width at half-height in linear second order dispersion media was analyzed. It was shown that rectangular non-chirped pulse width varies non-monotonously with distance and reaches 50–60% initial width at compression length that is equal to 0.44 dispersive length. This compression was shown to be caused by dispersive pulse-edges perturbations that lead to frequency chirp on pulse top. The results of experiment with non-chirped rectangular surface magnetostatic wave pulses in yttrium iron garnet film are presented and are in qualitative agreement with the theoretical results. }}