RECTANGULAR PULSE COMPRESSION IN LINEAR DISPERSIVE MEDIA


Cite this article as:

Galishnikov А. А., Kozhevnikov А. V., Filimonov Y. А. RECTANGULAR PULSE COMPRESSION IN LINEAR DISPERSIVE MEDIA. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 1, pp. 63-78. DOI: https://doi.org/10.18500/0869-6632-2005-13-1-63-78


Based on the parabolic differential equation solution behaviour of the pulse width at half-height in linear second order dispersion media was analyzed. It was shown that rectangular non-chirped pulse width varies non-monotonously with distance and reaches 50–60% initial width at compression length that is equal to 0.44 dispersive length. This compression was shown to be caused by dispersive pulse-edges perturbations that lead to frequency chirp on pulse top. The results of experiment with non-chirped rectangular surface magnetostatic wave pulses in yttrium iron garnet film are presented and are in qualitative agreement with the theoretical results.

Key words: 
-
DOI: 
10.18500/0869-6632-2005-13-1-63-78
Literature

1. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1990.

2. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988.

3. Сухоруков А.П. Оптика сверхкоротких импульсов // Соросовский образовательный журнал. Физика. 1997.

4. Вайнштейн Л.А. Распространение импульсов // УФН. 1976. Т. 118, вып. 2. C. 339.

5. Agrawal G.P., Potasek M.J. Effect of frequency chirping on the performance of optical communication systems // Optics Letters. 1986. Vol. 11, No5. P. 318.

6. Anderson D., Lisak M. Propagation characteristics of frequency-chirped super-Gaussian optical pulses // Optics Letters. 1986. Vol. 11, No 9. P. 569.

7. Iwashita K., Nakagawa K., Nakano Y., Suzuki Y. Chirp pulse transmission through a single-mode fibre//Electronics Lett. 1982. Vol. 18, No 20. P. 873.

8. Kalinikos B.A., Kovshikov N.G., Slavin A.N. Observation of dipole spin wave envelope solitons in ferromagnetics films // IEEE Trans. on magnetics. 1990. Vol. 26, No5. P. 1477.

9. Кудинов Е.В., Шабунин А.П. Прохождение сигналов в линии задержки на основе магнитостатических волн (МСВ) //Радиотехнические устройства. Киевск. политехн. ин-т, 1987. С.4.

10. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Наука, 1994.

11. Медведев В.В., Фетисов Ю.К. Вопросы кибернетики. Устройства и системы. М.: МИРЭА, 1983. С.171.

12. Костылев М.П., Ковшиков Н.Г. Возбуждение, формирование и распространение солитоноподобных импульсов спиновых волн в феромагнитных пленках (численный расчет и эксперимент) // ЖТФ. 2002. Т. 72, вып.11. C. 5.

13. Synogach V.T., Fetisov Yu.K., Mathieu Ch., Patton C.E. Ultra short magnetostatic surface wave pulse formation due to three magnon splitting // IEEE Intermag. Canada, Toronto 9-13 April 2000. Р. GC-06.

14. Filimonov Yu.A., Marcelli R., Nikitov S.A. Non-linear magnetostatic surface waves pulse propagation in ferrite-dielectric-metal structure // IEEE Trans. on magn. 2002, September. Vol. 38, No5. P. 3105.

15. Казаков Г.Т., Кожевников А.В., Филимонов Ю.А. Четырехмагнонный распад поверхностных магнитостатических волн в пленках железоиттриевого граната // ФТТ. 1998. Т. 39. C. 330.

16. Чиркин В.И., Шильников Ю.Р., Челищев Н.И. Время возбуждения спиновых волн для нелинейных процессов первого и второго порядков //ФТТ. 1968. Т. 10, вып.6. C. 1876.

17. Звездин А.К., Попков А.Ф. К нелинейной теории магнитостатических спиновых волн // ЖЭТФ. 1983. Т. 84, вып.2. C. 606.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Галишников-IzvVUZ_AND-13-1-63,
author = {А. А. Galishnikov and А. V. Kozhevnikov and Yu. А. Filimonov },
title = {RECTANGULAR PULSE COMPRESSION IN LINEAR DISPERSIVE MEDIA},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/rectangular-pulse-compression-in-linear-dispersive-media},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-1-63-78},pages = {63--78},issn = {0869-6632},
keywords = {-},
abstract = {Based on the parabolic differential equation solution behaviour of the pulse width at half-height in linear second order dispersion media was analyzed. It was shown that rectangular non-chirped pulse width varies non-monotonously with distance and reaches 50–60% initial width at compression length that is equal to 0.44 dispersive length. This compression was shown to be caused by dispersive pulse-edges perturbations that lead to frequency chirp on pulse top. The results of experiment with non-chirped rectangular surface magnetostatic wave pulses in yttrium iron garnet film are presented and are in qualitative agreement with the theoretical results. }}