ABOUT THE HISTORY OF NONLINEAR INTEGRAL EQUATIONS


Cite this article as:

Bogatov E. M., Mukhin R. R. ABOUT THE HISTORY OF NONLINEAR INTEGRAL EQUATIONS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2016, vol. 24, iss. 2, pp. 77-114. DOI: https://doi.org/10/18500/0869-6632-2016-24-2-77-114


The work is dedicated to the history of the theory of nonlinear integral equations, covering a period before the start of the 1930s. By analyzing the specifics of the initial period, authors emphasize that the integral equations (in particular, nonlinear equations) is independent object of research with their own problems, requiring its own system of concepts and own language. As a starting point here A.M. Lyapunov’s and A.Poincare’s works about the figures of equilibrium of rotating fluids were taken (in these works non-linear integral equations first appeared and qualitative methods originated). As a continuation, corresponding results of some their followers (E. Schmidt, T. Lalesku and G. Bratu) are discussed.

It is noted that by the end of 1920s–beginning of 1930s the old ideological framework – «equation–solution», dominated in mathematics in XVIII–XIX centuries, is exhausted itself. For the further progress new ideas and new approaches were needed. The authors attributed this period to the next stage of development, when it became involved topological and functional-analytic methods and began to build a consistent deductive theory, based on strict definitions and common structures. In this context, the contribution to the development of the theory of nonlinear integral equations of the European mathematicians – L. Lichtenstein and A. Hammerstein and domestic mathematicians – P.S. Urysohn and A.I. Nekrasov is analyzed.

The influence of the theory of nonlinear integral equations on the creation and establishment of functional analysis is also estimated.

 
 

DOI:10/18500/0869-6632-2016-24-2-77-114

 

Paper reference: Bogatov E.M., Mukhin R.R. About the history of nonlinear integral equations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 2. P. 77-114.

 
DOI: 
10/18500/0869-6632-2016-24-2-77-114
Literature

1. Euler L. Integral Calculus. Vol. 2. Moscow: GITTL, 1957 (in Russian).

2. Vileytner G. History of mathematics from Descartes to the middle of the XIX century. Moscow: Fizmatlit, 1960 (in Russian).

3. Simonov N.I. Euler’s apllied methods of analysis. Moscow: GITTL, 1957(inRussian).

4. Abel N.H. Solution de quelques problemes ` a l’aide int ` egrales d  ́ efinies. In: Oeuvres  ́completes de Niels Henrik Abel 1. (Nouv. Ed.; Ed. L. Sylow-S. Lie) Grondahl &  ́Son, Christiania, 1881. P. 11–27.

5. Abel N.H. Resolution d’un probl  ́ eme de m ` echanique. In: Oeuvres compl ` etes de Niels  ́Henrik Abel 1. (Nouv. Ed.; Ed. L.Sylow-S. Lie) Grondahl & Son, Christiania, 1881.P. 97–101.

6. Bocher M. ˆ An Introduction to the Study of Integral Equations. Cambridge: The University Press, 1909.

7. Bateman H. Report on the history and present state of the theory of integral equations// British Assoc. for the Advancement of Sci. 1910. Vol. 80. P. 345–424.

8. Dorofeeva A.V. Creation of the classical theory of the integral equations with simmetric kernel // Hist. and Methodol. of the Nat. Sci. 1974. Vol. 16. P. 63–77 (in Russian).

9. Aleksandrova I.L. About the history of the theory of integral equations. PhD Thesis. Moscow: IHST RAS, 1992 (in Russian).

10. Du Bois-Reymond P. Bemerkungen uber  ̈ ∆z = 0 // J. de Crelle. 1888. Vol. 103. P. 204–229.

11. Volterra V. Sopra alcune questioni di inversione di integrali definiti // Ann. Mat. Pura Appl. 1897. Vol. 25. P. 139–178.

12. Volterra V. Sulla inversione degli integrali definiti // R.C. Accad. Lincei. 1896. Vol. 5. P. 177–185.

13. Volterra V. Sopra un problema di elettrostatica // Nuovo Cimento. 1884. Vol. XVI. P. 49–57.

14. Volterra V. Le ̧cons sur les equations int  ́ egrales et les  ́ equations int  ́ egro-diff  ́ erentielles.  ́Paris, 1913.

15. Fredholm E.I. Sur une classe d’equations fonctionnelles // Acta Math. 1903. Vol. 27.  ́P. 365–390.

16. Hilbert D. Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig: Verlag und Druck von B.G. Teubner, 1912.

17. Schmidt E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil: Entwicklung willkurlicher Funktionen nach Systemen vorgeschriebener // Math.  Ann. 1907. Vol. 63. P. 433–476.

18. Schmidt E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. II Teil: Auflosung der allgemeinen linearen Integralgleichung // Math. Ann. 1907. Vol. 64.  P. 161–174.

19. Schmidt E. Uber die Aufl  ̈ osung linearer Gleichungen mitunendlich vielen Unbekannten // Rend. Circ. Mat. Palermo. Ser. 1. 1908. Vol. 25. P. 53–77.

20. Dieudonne J. History of functional analysis. Amsterdam: North-Holland publishing company, 1981.

21. Monna A.F. Functional Analysis in Historical Perspective. New York: Halstead Press, Wiley, 1973.

22. Molodshyi V.N. O. Cauchy and the revolution in the mathematical analysis of the first quarter of the XIX century // Hist. and Mathemat. Studies. 1978. Vol. 23. P. 32–55 (in Russian).

23. Lyusternik L.A. The early years of the Moscow Mathematics School // Uspekhi Mat. Nauk. 1967. Vol. 22, No 1(133). P. 137–161.

24. Mukhin R.R. Chaos and nonintegrability in Hamiltonian systems // Izv. VUZ Appl. Nonlin. Dynam. 2006. Vol. 14, No 1. P. 3–24 (in Russian).

25. Lyusternik L.A. The early years of the Moscow Mathematics School // Uspekhi Mat. Nauk. 1967. Vol. 22, No 4(136). P. 147–185.

26. Bernkopf M. The development of function spaces with particular reference to their origins in integral equation theory // Arch. Hist. Ex. Sсi. 1966. Vol. 3. P. 1–96.

27. Birkhoff G.& Kreyszig E. The establishment of functional analysis // Historia Math. 1984. Vol. 11. P. 258–321.

28. Lindstrom J.  ̈ On the origin and early history of functional analysis. UUDM project Report 2008:1, Uppsala University, 2008.

29. Bourbaki N. Elements d’histoire des mathematiques. Springer-Verlag, Berlin Heidelberg New York, 2007.

30. Weyl H. David Hilbert and his mathematical work // Bull. Amer. Math. Soc. 1944. Vol. 50, No 9. P. 612–654.

31. Reid C. Hilbert. Moscow: Nauka, 1977 (in Russian).

32. Klein F. Elementarmathematik vom hoheren Standpunkte aus. Teil I. Arithmetik. Algebra. Analysis. Vierte Auflage. Springer, Berlin, 1913.

33. Hilbert D. Basis of general theory of integral equations. Selected sci. works. Vol. II. Moscow: Factorial, 1998. P. 68–366 (in Russian).

34. Medvedev F.A. Essays of the theory of a real variable functions history. Moscow: URSS, 2006 (in Russian).

35. Riesz F. Uber orthogonal Functionensysteme // Ouevres compl  ̈ etes. 1960. Vol. 1. `Budapest. P. 385–395.

36. Riesz F. Sur les systeme orthogonaux de fonctions // C.R. Acad. Sci. 1907. Vol. 144. `P. 615–619.

37. Fisher E. Sur la convergence en moyenne // C.R. Acad. Sci. 1907. Vol. 144. P. 1022–1024

38. Riesz F. Les systemes d’ ` equations lin  ́ eaires  ́ a une infinit ` e d’inconnues. Paris, Gauthier-Villar, 1913.

39. Riesz F. Uber lineare Funktionalgleichungen // Acta Math. 1918. Vol. 41. P. 71–98.  ̈

40. Hilbert D. The essence and purpose of the analysis of infinitely many independent variables. David Hilbert. Selected works, Vol. II. Moscow: Factorial, 1998. P. 35–49 (in Russian).

41. Weyl H. Topology and abstract algebra as two manners of understanding in mathematics. Hermann Weyl. Mathematical mindset. Moscow: Nauka, 1989. P. 24–41 (in Russian).

42. Tikhomirov V.M. The remarks to the work «The essence and purpose of the analysis of infinitely many independent variables». David Hilbert. Selected works. Vol. II. Moscow: Factorial, 1998. P. 35–49.

43. Hilbert D. Uber das Unendliche // Math. Ann. 1926. Vol. 95. P. 161–190.  ̈

44. Vorontsov-Vel’yaminov B.A. Laplace. Moscow: Nauka, 1985 (in Russian).

45. Mukhin R.R. Essays on the history of dynamic chaos. Moscow: URSS, 2012 (in Russian).

46. Lyapunov A.M. About the form of the celestial bodies. A.M. Lyapunov. Selected works. Ed. V.I. Smirnov. Moscow-Leningrad: USSR, Acad. of Sci. Publishing, 1948. 303–322 (in Russian).

47. Lyapunov A.M. On the stability of ellipsoidal forms of equilibrium of a rotating liquid. St.-Psb.: Acad. of Sci. Publishing, 1884 (in Russian).

48. Yushkevich A.P. A.M. Lyapunov and Academy of Science of Frace Institute // Hist. and Methodol. of the Nat. Sci. 1965. Vol. XVI. P. 375–388 (in Russian).

49. Smirnov V.I., Yushkevich A.P. Correspondence between A.M. Lyapunov, H. Poincare and P. Dyugem // Hist. and Methodol. of the Nat. Sci. 1985. Vol. XXIX. P. 265–284 (in Russian).

50. Liapounoff A.M. Sur la stabilite des figures ellipsoпdales d’  ́ equilibre d’un liquide  ́ anime d’un mouvement de rotation // Ann. Facult  ́ e Sci. Univ. Toulouse, 2 ser. 1904.  ̈ Vol. 6. P. 5–116.

51. Lyapunov A.M. About one problem of Tchebyshev // Notes Acad. Sci. Phys. And Math. Dep. 8 ser. 1905. Vol. 17, No 3. P. 1–32 (in Russian).

52. Liapunoff A.M. Sur les figures d’ equilibre peu diff  ́ erentes des ellipsoides d’une  ́masse liquide, homogene, dou ` ee d’un mouvement de rotation. I partie. Etude g  ́ en ́ erale  ́ du probleme. St.-Psb. Imprim. de l’Acad. des Sc., 1906. `

53. Liapunoff A.M. Sur les figures d’ equilibre peu diff  ́ erentes des ellipsoides d’une  ́masse liquide, homogene, dou ` ee d’un mouvement de rotation. II partie. Figures  ́ d’equilibre d  ́ eriv  ́ ees des ellipsoides de Maclaurin. St.-Psb. Imprim. de l’Acad. des  ́Sc., 1909.

54. Liapunoff A.M. Sur les figures d’ equilibre peu diff  ́ erentes des ellipsoides d’une  ́masse liquide, homogene, dou ` ee d’un mouvement de rotation. III partie. Figures  ́ d’equilibre d  ́ eriv  ́ ees des ellipsoides de Jacobi. St.-Psb. Imprim. de l’Acad. des Sc.,  ́ 1912.

55. Liapunoff A.M. Sur les figures d’ equilibre peu diff  ́ erentes des ellipsoides d’une  ́masse liquide, homogene, dou ` ee d’un mouvement de rotation. IV partie. Nouvelles  ́formules pour la recherches des figures d’equilibre. St.-Psb. Imprim. de l’Acad. des  ́ Sc., 1914.

56. Liapunoff A.M. Recherches dans la theorie de la figures des corps c  ́ elestes // Memoires de l’Academie Imperiale des Sciences de St. Petersburg. 8-me Serie. 1903. Vol. 14, No 7. P. 1–37.

57. Poincar’e Н. About the curves defined by the differential equations. Moscow-Leningrad: OGIZ, 1947 (in Russian).

58. Kovalevskaya S. Zusaetze und Bemerkungen zu Laplace’s Untersuchungen ueber die Gestalt der Saturnringe // Astronom. Nachr. 1885. Vol. 111. P. 37–48.

59. Appel P. Equilibrium figures of rotating homogeneous fluid. Moscow-Leningrad: ONTI, 1936 (in Russian).

60. Poincare Н.  ́ Sur l’equilibre d’une masse fluide anim  ́ ee d’un mouvement de rotation  // C.R. Acad. Sci. 1885. Vol. 100. P. 346–348.

61. Poincare Н.  ́ Note sur la stabilite de l’anneau de Saturne // Bull. Astronom. 1885.  ́Vol. 2. P. 507–508.

62. Poincare Н.  ́ Sur l’equilibre d’une masse fluide anim  ́ ee d’un mouvement de rotation  ́// Acta Math. 1885. Vol. 7, No 1. P. 259–380.

63. Poincare Н.  ́ Sur la stabilite de l’  ́ equilibre des figures piriformes affect  ́ ees par une  ́masse // Proc. Roy. Soc. 1901. Vol. 69. P. 148–149; Philos. Trans. A. 1902. Vol. 198. P. 333–373; 1902. Vol. 200. P. 67.

64. Jeans J.H. The motion of tidally distorted masses // Memories of the Roy. Astr. Soc. 1917. Vol. LXII.

65. Schmidt E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. III Teil. Uber die Aufl  ̈ osing der nichtlinearen Integralgleichung und die Verzweigung ihrer  Losungen // Math. Ann. 1908. Vol. 65. P. 370–399.  ̈

66. Fredholm Hilbert Schmidt. Three Fundamental Papers on. Integral Equations. Translated with commentary by. G.W. Stewart, 2011. Available at www.umiacs.umd.edu/ stewart/FHS.pdf (accessed 19.10.15).

67. Khvedelidze B.V. Lyapunov-Schmidt equation. Math. Encyclopedia. Vol. 3. Moscow: Soviet Encyclopedia, 1982. P. 473-474 (in Russian).

68. Picard E. Sur une equation fonctionnelle // C.R. Acad. Sci. 1904. Vol. 139.  ́ P. 245–248.

69. Picard E. Sur une equation fonclionnelle se pr  ́ esentant dans la th  ́ eorie de certaines  ́ equation aux d  ́ eriv  ́ ees partielles // C.R. Acad. Sci. 1907. Vol. 144. P. 1409–1411.  ́

70. Picard E. Traite d’Analyse. T. III. Gauthier-Villars. Paris, 1905.  ́

71. Davis H.T. Introduction to Nonlinear Differential and Integral Equations. Dover, New York, 1962.

72. Lalescu’ T. Sur l’equation de Volterra // J. de Math., ser. 6. 1908. Vol. 4. P. 125–202.  ́

73. Bratu G. Sur certaines equations int  ́ egrales non lin  ́ eaires // C.R. Acad. Sci. Paris.  ́1910. Vol. 150. P. 896–899.

74. Bratu G. Sur les equations int  ́ egrales non lin  ́ eaires // Bulletin de la S. M. F. 1914.  ́Vol. 42. P. 113–142.

75. Urysohn P. Sur une classe d’equations int  ́ egrales non lin  ́ eaires // Mat. Sb. 1923.  ́Vol. 31, No 2. P. 236–255.

76. Aleksandrov P.S. About my friend. L. Neiman. The joy of discovery. Moscow: Detgiz, 1972. P. 135–149 (in Russian).

77. Neiman L. The joy of discovery. Moscow: Detgiz, 1972 (in Russian).

78. Mathematics: The Science of the USSR in fifteen years (1917–1932). Moscow-Leningrad: GTTI, 1932 (in Russian).

79. Urysohn P.S. Works on topology and other areas of mathematics. Moscow-Leningrad: GITTL, 1951 (in Russian).

80. Arkhangel’skii A.V. and Tikhomirov V.M. Pavel Samuilovich Urysohn (1898–1924) // Uspekhi Mat. Nauk. 1998. Vol. 53, No 5(323). P. 5–26 (in Russian).

81. Kolmogorov A.N. Scientific advisor. L. Neiman. The joy of discovery. Moscow: Detgiz, 1972. P. 160–164 (in Russian).

82. Nekrasov A.I. Waves of steady type // Izv. Ivanovo-Vozn. Politechn. Inst. 1921. Vol. 3. P. 52–65 (in Russian).

83. Nekrasov A.I. The exact theory of the steady type waves on the heavy liquid surface. Moscow: USSR Acad. of Sci., 1953 (in Russian).

84. Nekrasov A.I. Waves of steady type. Chap. 2. About the nonlinear integral equations // Izv. Ivano-Vozn. Politechn. Inst. 1922. Vol. 6. P. 155–171 (in Russian).

85. Lapko A.F., Lyusternik L.A. From the history of Soviet mathematics // Uspekhi Mat. Nauk. 1967. Vol. 22, No 6 (138). P. 13–140.

86. Vainberg M.M., Trenogin V.A. The methods of Lyapunov and Schmidt in the theory of non-linear equations and their further development // Uspekhi Mat. Nauk. 1962. Vol. 17, No 2(104). P. 13–75 (in Russian).

87. Sekerzh-Zen’kovich Ya.I. Aleksandr Ivanovich Nekrasov (on the 75th anniversary of his birth) // Uspekhi Mat. Nauk. 1960. Vol. 15, No 1 (91). P. 153–162 (in Russian).

88. Vainberg M.M., Aizengendler P.G. Methods of investigation in the theory of branching of solutions // Itogi Nauki. Ser. Matematika. Mat. Anal. 1965. Moscow: VINITI, 1966. P. 7–69 (in Russian).

89. Lyusternik L.A. The early years of the Moscow mathematical school // Uspekhi Mat. Nauk. 1967. Vol. 22, No 2 (134). P. 199–239 (in Russian).

90. Liapunoff A.M. Sur certaines series de figures d’  ́ equilibre d’un liquide h  ́ et ́ erog  ́ ene ` en rotation. Partie 1-re. Leningrad, 1925.

91. Liapunoff A.M. Sur certaines series de figures d’  ́ equilibre d’un liquide h  ́ et ́ erog  ́ ene `en rotation. Partie 2-me. Leningrad, 1927.

92. Lichtenstein L. Vorlesungen Uber einige Klassen nichtlinearer Integralgleichungen  ̈und Integro-Differentialgleichungen nebst Anwendungen. Berlin: Julius Springer, 1931.

93. Smirnov N.S. Introduction to the theory of nonlinear integral equations. Moscow-Leningrad: Glav. Red. Otschet. Lit., 1936 (in Russian).

94. Hammerstein A. Nichtlineare Integralgleichungen nebst Anwendungen // Acta Math. 1930. Vol. 54. P. 117–176.

95. Golomb M. Review of the article «Hammerstein, A. Nichtlineare Integralgleichungen nebst Anwendungen». Jahrbuch Database. URL: http://www.zentralblatt-math.org/jahrbuch/?id=66165&type=pdf (accessed: 19.10.15)

96. Krasnov M.L. Integral equations. Introduction to the theory. Moscow: Nauka, 1975 (in Russian).

97. Banach S. Sur les operations dans les ensembles abstraits et leur application aux  ́ equations int  ́ egrales // Fund. Math. 1923. Vol. 3. P. 133–181.  ́

98. Hahn H. Uber lineare Gleichungssysteme in linearen R  ̈ aumen // J. Reine Angew.  ̈Math. 1927. Vol. 157. P. 214–229.

Heading: 
Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Богатов -IzvVUZ_AND-24-2-77,
author = {Egor Mikhailovich Bogatov and R. R. Mukhin},
title = {ABOUT THE HISTORY OF NONLINEAR INTEGRAL EQUATIONS},
year = {2016},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {24},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/about-the-history-of-nonlinear-integral-equations},
address = {Саратов},
language = {russian},
doi = {10/18500/0869-6632-2016-24-2-77-114},pages = {77--114},issn = {0869-6632},
keywords = {History of functional analysis,nonlinear integral equations,Urysohn equation,Hammerstein equation,A.M. Lyapunov,H. Poincare,D. Hilbert,E. Schmidt,Bratu equation,Lalescu equation,L. Lichtenstein,A.I. Nekrasov,bifurcations,equilibrium figures of rotating liquids,qualitative methods},
abstract = {The work is dedicated to the history of the theory of nonlinear integral equations, covering a period before the start of the 1930s. By analyzing the specifics of the initial period, authors emphasize that the integral equations (in particular, nonlinear equations) is independent object of research with their own problems, requiring its own system of concepts and own language. As a starting point here A.M. Lyapunov’s and A.Poincare’s works about the figures of equilibrium of rotating fluids were taken (in these works non-linear integral equations first appeared and qualitative methods originated). As a continuation, corresponding results of some their followers (E. Schmidt, T. Lalesku and G. Bratu) are discussed. It is noted that by the end of 1920s–beginning of 1930s the old ideological framework – «equation–solution», dominated in mathematics in XVIII–XIX centuries, is exhausted itself. For the further progress new ideas and new approaches were needed. The authors attributed this period to the next stage of development, when it became involved topological and functional-analytic methods and began to build a consistent deductive theory, based on strict definitions and common structures. In this context, the contribution to the development of the theory of nonlinear integral equations of the European mathematicians – L. Lichtenstein and A. Hammerstein and domestic mathematicians – P.S. Urysohn and A.I. Nekrasov is analyzed. The influence of the theory of nonlinear integral equations on the creation and establishment of functional analysis is also estimated.     DOI:10/18500/0869-6632-2016-24-2-77-114   Paper reference: Bogatov E.M., Mukhin R.R. About the history of nonlinear integral equations. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 2. P. 77-114.   Download full version }}