ACCIDENTAL RESONATORS


Cite this article as:

Bliokh Y. P. ACCIDENTAL RESONATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 4, pp. 85-97. DOI: https://doi.org/10.18500/0869-6632-2012-20-4-85-97


Anderson localization of electromagnetic waves incident on a disordered medium manifests itself in exponential decrease of the wave amplitude inwards the medium. Transparency of the medium is exponentially small if the medium thickness is large enough. However, there is a set of frequencies (resonances), specific for every random realization of the disordered medium, for which the medium is almost transparent. These sets are «fingerprints» of the media: every realization is characterized by its own unique set of resonances. Any resonance is associated with accidently formed resonator: accidently transparent region («cavity») surrounded by almost non-transparent (due to the wave localization) «walls». This unambiguous correspondence allows determination of the medium parameters and the wave amplitude distribution within the given sample of randomly disordered medium using externally measured characteristics of the resonances.

DOI: 
10.18500/0869-6632-2012-20-4-85-97
Literature

1. Anderson P.W. Absence of diffusion in certain random lattices // Phys. Rev. 1958. Vol. 109. P. 1492.

2. Lagendijk A., van Tiggelen B., Wiersma D.S. Fifty years of Anderson localization // Phys. Today, 24-29, August 2009.

3. Berry M.V., Klein S. Transparent mirrors: rays, waves and localization // Eur. J. Phys. 1997. Vol. 18. P. 222.

4. McKenzie D.R., Yin Y., McFall W.D. Silvery fish skin as an example of a chaotic reflector // Proc. R. Soc. Lond. A. 1997. Vol. 451. P. 579.

5. Parker A.R. A geological history of reflecting optics // J. R. Soc. Interface 2005. Vol. 2. P. 1.

6. Bliokh Y., Chaikina E.I., Lizarraga N., Freilikher V., M  ́ endez E., Nori F.  ́ Disorder-induced cavities, resonances, and lasing in randomly-layered media // Phys. Rev. B. 2012. Vol. 86. 054204.

7. Лифшиц И.М., Кирпиченков В.Я. О туннельной прозрачности неупорядоченных систем // ЖЭТФ. 1979. Т. 77. P. 989. [Sov. Phys. JETP 50, 499 (1979)].

8. Pendry J. Quasi-extended electron states in strongly disordered systems // J. Phys. C. 1987. Vol. 20. P. 733.

9. Bliokh K.Y., Bliokh Y., Freilikher V., Genack A., Hu B., Sebbah P. Localized modes in open one-dimensional dissipative random systems // Phys. Rev. Let. 2006. Vol. 97. 2439094.

10. Bliokh K.Y., Bliokh Y., Freilikher V., Genack A., Sebbah P. Coupling and level repulsion in the localized regime: from isolated to quasi-extended modes // Phys. Rev. Let. 2008. Vol. 101. 133901.

11. Scales J.A., Carr L.D., McIntosh D.B., Freilikher V., Bliokh Y.P. 9 Millimeter wave localization: Slow light and enhanced absorption in random dielectric media // Phys. Rev. B 2007. Vol. 76. 085118.

12. Cao H. Lasing in random media // Waves in Random Media. 2003. Vol. 13. R1; Cao H. Review on latest developments in random lasers with coherent feedback // J. Phys. A. 2005. Vol. 38, 10497; Wiersma D.S. The physics and applications of random lasers // Nature Phys. 2008. Vol. 4. P. 359.

13. Shadrivov I., Bliokh K., Bliokh Y., Freilikher V., Kivshar Y. Bistability of Anderson localized states in nonlinear random media // Phys. Rev. Let. 2010. Vol. 104. 123902.

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Блиох-IzvVUZ_AND-20-4-85,
author = {Y. P. Bliokh},
title = {ACCIDENTAL RESONATORS},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/accidental-resonators},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-4-85-97},pages = {85--97},issn = {0869-6632},
keywords = {Wave localization,resonances,remote sensing.},
abstract = {Anderson localization of electromagnetic waves incident on a disordered medium manifests itself in exponential decrease of the wave amplitude inwards the medium. Transparency of the medium is exponentially small if the medium thickness is large enough. However, there is a set of frequencies (resonances), specific for every random realization of the disordered medium, for which the medium is almost transparent. These sets are «fingerprints» of the media: every realization is characterized by its own unique set of resonances. Any resonance is associated with accidently formed resonator: accidently transparent region («cavity») surrounded by almost non-transparent (due to the wave localization) «walls». This unambiguous correspondence allows determination of the medium parameters and the wave amplitude distribution within the given sample of randomly disordered medium using externally measured characteristics of the resonances. }}