ANALYSIS OF NOISE­INDUCED BIFURCATIONS FOR THE HOPF SYSTEM


Cite this article as:

Bashkirtseva I. A., Perevalova Т. V., Ryashko L. B. ANALYSIS OF NOISE­INDUCED BIFURCATIONS FOR THE HOPF SYSTEM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 1, pp. 37-50. DOI: https://doi.org/10.18500/0869-6632-2010-18-1-37-50


We consider the Hopf system as a classical model of a stiff birth of a cycle. In the presence of parametrical and additive random disturbances, various types of the stochastic attractors are observed. The solution of the corresponding Fokker–Planck–Kolmogorov equation is found. The qualitative changes of the form for stochastic attractors under multiplicative noise are shown. The phenomenon of backward stochastic bifurcations is described in details.

DOI: 
10.18500/0869-6632-2010-18-1-37-50
Literature

1. Стратонович Р.Л., Ланда П.С. Воздействие шумов на генератор с жестким возбуждением // Радиофизика. 1959. Т. 2, No 1. С. 37.

2. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987. 400 c.

3. Неймарк Ю.Н., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987. 424 c.

4. Landa P.S., McClintock P.V.E. Changes in the dynamical behavior of nonlinear systems induced by noise // Physics Reports. 2000. Vol. 323. P. 1.

5. Fedotov S., Bashkirtseva I., Ryashko L. Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent subcritical transition // Phys. Rev. E. 2002. Vol. 66. P. 066310.

6. Fedotov S., Bashkirtseva I., Ryashko L. Stochastic analysis of subcritical amplification of magnetic energy in a turbulent dynamo // Phys. A. 2004. Vol. 342. P. 491.

7. Понтрягин Л.С., Андронов А.А., Витт А.А. О статистическом рассмотрении динамических систем // ЖЭТФ. 1933. Т. 3, вып. 3. С. 165.

8. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. М.: Сов. радио, 1961.

9. Ibrahim R.A. Parametric Random Vibration. New York: John Wiley and Sons, 1985.

10. Soong T.T., Grigoriu M. Random Vibration of Mechanical and Structural Systems. New Jersey: RTL Prentice-Hall, Englewood Cliffs, 1993.

11. Вентцель А.Д., Фрейдлин М.И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука, 1979.

12. Dembo M., Zeitouni O. Large Deviations Techniques and Applications. Boston: Jones and Bartlett Publishers, 1995.

13. Naeh T., Klosek M.M., Matkowsky B.J., Schuss Z. A direct approach to the exit problem // SIAM J. Appl. Math. 1990. Vol. 50. P. 595.

14. Roy R.V. Asymptotic analysis of first passage problem // Int. J. Non-Linear Mechanics. 1997. Vol. 32. P. 173.

15. Smelyanskiy V.N., Dykman M.I., Maier R.S. Topological features of large fluctuations to the interior of a limit cycle // Physical Review E. 1997. Vol. 55. P. 2369.

16. Башкирцева И.А., Ряшко Л.Б., Стихин П.В. Стохастическая чувствительность циклов системы Ресслера при переходе к хаосу // Известия вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 6. С. 32.

17. Bashkirtseva I.A., Ryashko L.B. Stochastic sensitivity of 3D-cycles // Mathematics and Computers in Simulation. 2004. Vol. 66. P. 55.

18. Ryagin M., Ryashko L. The analysis of the stochastically forced periodic attractors for Chua’s circuit // Int. J. Bifurcation Chaos. 2004. Vol. 14, No 11. P. 3981.

19. Bashkirtseva I.A., Ryashko L.B. Sensitivity and chaos control for the forced nonlinear oscillations // Chaos, Solitons and Fractals. 2005. Vol. 26. P. 1437.

20. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise // In Fluctuations and Sensitivity in Equilibrium Systems / ed. by W. Horsthemke and D.K. Kondepudi. Berlin: Springer, 1984. P. 143.

21. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.

22. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise // Phys. Rev. A. 1987. V. 36. P. 834.

23. Arnold L., Bleckert G., Schenk-Hoppe K. The stochastic Brusselator: Parametric noise destroys Hopf bifurcation // In Stochastic Dynamics. Bremen, 1997. P. 71. New-York: Springer, 1999.

24. Malick K., Marcq P. Stability analysis of noise-induced Hopf bifurcation // Eur. Phys. J. 2003. Vol. 36. P. 119.

25. Leung H.K. Stochastic Hopf bifurcation in a biased van der Pol model // Physica A. 1998. Vol. 254. P. 146.

26. Namachchivaya N.Sri. Hopf bifurcation in the presence of both parametric and external stochastic excitations // J. Appl. Mech. 1988. Vol. 110. P. 923.

27. Schenk-Hoppe K.R. Bifurcation scenarios of the noisy Duffing–van der Pol oscillator // Nonlinear dynamics. 1996. Vol. 11. P. 255.

28. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances// Chaos, Solitons and Fractals. 2009. Vol. 39. P. 7.

29. Гардинер К.В. Стохастические методы в естественных науках. М.: Мир, 1986.

30. Arnold L. Random Dynamical Systems. Berlin: Springer, 1998.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Башкирцева -IzvVUZ_AND-18-1-37,
author = {I. A. Bashkirtseva and Т. V. Perevalova and L. B. Ryashko},
title = {ANALYSIS OF NOISE­INDUCED BIFURCATIONS FOR THE HOPF SYSTEM},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/analysis-of-noiseinduced-bifurcations-for-the-hopf-system},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-1-37-50},pages = {37--50},issn = {0869-6632},
keywords = {Hopf system,cycles,equilibria,stochastic attractors,backward bifurcations.},
abstract = {We consider the Hopf system as a classical model of a stiff birth of a cycle. In the presence of parametrical and additive random disturbances, various types of the stochastic attractors are observed. The solution of the corresponding Fokker–Planck–Kolmogorov equation is found. The qualitative changes of the form for stochastic attractors under multiplicative noise are shown. The phenomenon of backward stochastic bifurcations is described in details. }}