АNALYTICAL RESEARCH OF NONLINEAR PROPERTIES OF FERROELECTRICS
Cite this article as:
Кamyshlov V. V., Bystrov V. S. АNALYTICAL RESEARCH OF NONLINEAR PROPERTIES OF FERROELECTRICS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 2, pp. 77-94. DOI: https://doi.org/10.18500/0869-6632-2014-22-2-77-94
This paper describes a method to obtain an analytical expression for the nonlinear dependence of the ferroelectric polarization on the external electric field. To find analytical dependence, used a special Kml-function of second order. Listed structure built of series and groups of series representing Kml-function at any point in the complex plane. Analyzed domain of convergence of series , received as a boundary condition. To show the application of the method, as an example used a ferroelectric polymer polyvinylidene fluoride (PVDF–TrFE ). The proposed method can be used for any other ferroelectric or nonlinear systems ordered in the neighborhood of phase transitions under various external influences.
1. Cтруков Б.А., Леванюк А.П. Физические основы сегнетоэлектрических явлений в кристаллах. М.: Наука. Физматлит, 1995. 304 С.
2. Bystrov V.S., Bystrova N.K., Paramonova E.V., Sapronova A.V. Computational nano-structures and physical properties of the ultra-thin ferroelectric Langmuir–Blodgett films // Ferroelectrics Letters. 2006. Vol. 33. P. 153.
3. Bystrov V.S., Bystrova N.K., Paramonova E.V., Vizdrik G., Sapronova A.V., Kuehn M., Kliem H. and Kholkin A.L. First-principles calculations of molecular polarization switching in P(VDF-TrFE) ferroelectric thin Langmuir-Blodgett films // J. Phys. D: Condens.Matter. 2007. Vol. 19. 456210. doi: 10.1088/0953-8984/19/45/456210.
4. Кравченко Ф.Г. Элементарные Kml-функции и их свойства //Вычислительная и прикладная математика // Межвед. науч. сборник. Киев. 1970. Вып. 2. С. 171.
5. Быстров В.С., Камышлов В.В. Аналитический метод исследования характеристических уравнений // Электронный журнал «Исследовано в России». 2006. Т. 194. С. 1825. http://zhurnal.ape.relarn.ru/articles/2006/194.pdf
6. Кравченко Ф.Г., Камышлов В.В. Формальные операции над элементами аналитических функций // Электронный журнал «Исследовано в России». 2006. 195. С. 1835. http://zhurnal.ape.relarn.ru/articles/2006/195.pdf
7. Блинов Л.М., Фридкин В.М., Палто С.П., Буне А.В., Даубен П.А., Дюшарм С. Двумерные сегнетоэлектрики //Успехи физических наук. 2000. Т. 170, No 3.
BibTeX
author = {V. V. Кamyshlov and V. S. Bystrov},
title = {АNALYTICAL RESEARCH OF NONLINEAR PROPERTIES OF FERROELECTRICS},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/analytical-research-of-nonlinear-properties-of-ferroelectrics},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-2-77-94},pages = {77--94},issn = {0869-6632},
keywords = {Nonlinear systems,analytical expression,special Kml-function of second order,ferroelectric,polarization on the external electric field.},
abstract = {This paper describes a method to obtain an analytical expression for the nonlinear dependence of the ferroelectric polarization on the external electric field. To find analytical dependence, used a special Kml-function of second order. Listed structure built of series and groups of series representing Kml-function at any point in the complex plane. Analyzed domain of convergence of series , received as a boundary condition. To show the application of the method, as an example used a ferroelectric polymer polyvinylidene fluoride (PVDF–TrFE ). The proposed method can be used for any other ferroelectric or nonlinear systems ordered in the neighborhood of phase transitions under various external influences. }}