BIFURCATIONS IN ACTIVE PREDATOR – PASSIVE PREY MODEL
Cite this article as:
Zagrebneva А. D., Govorukhin V. N., Surkov . А. BIFURCATIONS IN ACTIVE PREDATOR – PASSIVE PREY MODEL. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 3, pp. 94-106. DOI: https://doi.org/10.18500/0869-6632-2014-22-3-94-106
Bifurcations were studied numerically in the system of partial differential equations, which is a one variant of predator-prey models. The mathematical model takes into account spatial distribution in habitat, active directed predator movements, birth and death process in prey population. The analysis of possible population dynamics development was performed by two qualitatively different discrete sampling techniques (Bubnov–Galerkin’s method and grid method). As a bifurcation parameters the predator quantity and predator reaction rate to spatial non- uniformity of prey population were used. As a result of numerical investigation was found that population under these assumptions can demonstrates a complex bifurcation transitions which leads to various spatio-temporal dynamics: periodic, quasi-periodic and chaotic regimes.
1. Иваницкий Г.Р., Медвинский А.Б., Цыганов М.А. От беспорядка к упорядоченности – на примере движения микроорганизмов // УФН. 1991. Т. 161, No 4. С. 13.
2. Иваницкий Г.Р., Медвинский А.Б., Цыганов М.А. От динамики популяционных автоволн, формируемых живыми клетками, к нейроинформатике // УФН. 1994. Т. 164, No 10. С. 1041.
3. Okubo A., Levin S. Diffusion and Ecological Problems: Modern Perspectives. New York: Springer-Verlag, 2001. 467 p.
4. Murray J.D. Mathematical Biology: I. An Introduction. Vol. I. NY: Springer, 2002. 576 p.
5. Murray J.D. Mathematical Biology: II. Spatial Models and Biomedical Applications. Vol. II. NY: Springer, 2003. 811 p.
6. Dolak Y., Hillen T. Cattaneo models for chemosensitive movement numerical solution and pattern formation // Journal of Mathematical Biology. 2003. Vol. 46. P. 153.
7. Berg H.C. Motile behavior of bacteria // Physics Today. 2000. Vol. 53, No 1. P. 24.
8. Berg H.C. E. coli in Motion. NY: Springer, 2004. 133 p.
9. Budrene E.O., Berg H.C. Complex patterns formed by motile cells of Escherichia coli // Nature. 1991. Vol. 349, No 6310, P. 630.
10. Tyson R., Lubkin S.R., Murray J.D. Model and analysis of chemotactic bacterial patterns in a liquid medium // Journal of Math. Biology. 1999. Vol. 38. P. 359.
11. Говорухин В.Н., Моргулис А.Б., Тютюнов Ю.В. Медленный таксис в модели хищник–жертва // Докл. РАН. 2000. Т. 372, No 6. С. 730.
12. Arditi R., Tyutyunov Yu., Morgulis А., Govorukhin V., Senina I. Directed movement of predators and the emergence of density-dependence in predator–prey models // Theoretical Population Biology. 2001. Vol. 59. P. 207.
13. Тютюнов Ю.В. Сапухина Н.Ю., Моргулис А.Б., Говорухин В.Н. Математическая модель активных миграций как стратегии питания в трофических сообществах // Журнал общей биологии. 2001. Т. 62, No 3. С. 253.
14. Цыганов М.А., Бикташев В.Н., Бриндли Дж., Холден А.В., Иваницкий Г.Р. Волны в кросс-диффузионных системах – особый класс нелинейных волн // УФН. 2007. Т.177, No 3. С. 275.
15. Hillen T., Painter K.J. A user’s guide to PDE models for chemotaxis // Journal of Mathematical Biology. 2009. Vol. 58. P. 183.
16. Тютюнов Ю.В., Загребнева А.Д., Сурков Ф.А., Азовский А.И. Микромасштабная пятнистость распределения веслоногих рачков как результат трофически-обусловленных миграций // Биофизика. 2009. Т. 54, No 3. С. 508.
17. Hataue I. Spurious numerical solutions in higher dimensional discrete systems // AIAA journal. 1995. Vol. 33, No 1. P.163.
18. Garba S.M., Gumel A.B., Lubuma J.M.-S. Dynamically-consistent non-standard finite difference method for an epidemic model // Mathematical and Computer Modelling. 2011. Vol. 53, No 1–2. P. 131.
19. Chen L., Jungel A. ̈ Analysis of a parabolic cross-diffusion population model without self-diffusion // Journal of Differential Equations. 2006. Vol. 224, No 1. P. 39.
20. Wolf A., Swift J.B., Swinney H.L., and Vastano J.A. Determining Lyapunov exponents from a time series // Physica D. 1985. No 16. P. 285.
21. Говорухин В.Н. Пакет MATDS. http://kvm.math.rsu.ru/matds/
22. Petrovskii S.V., Malchow H. Wave of chaos: New mechanism of pattern formation in spatio-temporal population dynamics // Theoretical Population Biology. 2001. Vol. 59. P. 157.
23. Медвинский А.Б., Петровский С.В., Тихонова И.А., Тихонов Д.А., Ли Б.Л., Вен-турино Э., Мальхе Х., Иваницкий Г.Р. Формирование пространственно-временных структур, фракталы и хаос в концептуальных экологических моделях на примере динамики взаимодействующих популяций планктона и рыбы // УФН. 2002. Т. 172, No 1. С. 31.
24. Chakraborty A., Singh M., Lucy D., Ridland P. Predator–prey model with prey-taxis and diffusion // Mathematical and Computer Modelling. 2007. Vol. 46 (3-4). P. 482.
25. Chakraborty A., Singh M., Ridland P. Effect of prey-taxis on biological control of the two-spotted spider mite: A numerical approach // Mathematical and Computer Modelling. 2009. Vol. 50, No3–4. P. 598.
BibTeX
author = {А. D. Zagrebneva and V N Govorukhin and F. А. Surkov},
title = {BIFURCATIONS IN ACTIVE PREDATOR – PASSIVE PREY MODEL},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/bifurcations-in-active-predator-passive-prey-model},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-3-94-106},pages = {94--106},issn = {0869-6632},
keywords = {Population dynamics,bifurcations,numerical analysis,taxis.},
abstract = { Bifurcations were studied numerically in the system of partial differential equations, which is a one variant of predator-prey models. The mathematical model takes into account spatial distribution in habitat, active directed predator movements, birth and death process in prey population. The analysis of possible population dynamics development was performed by two qualitatively different discrete sampling techniques (Bubnov–Galerkin’s method and grid method). As a bifurcation parameters the predator quantity and predator reaction rate to spatial non- uniformity of prey population were used. As a result of numerical investigation was found that population under these assumptions can demonstrates a complex bifurcation transitions which leads to various spatio-temporal dynamics: periodic, quasi-periodic and chaotic regimes. }}