BIFURCATIONS OF A TWODIMENSIONAL TORUS IN PIECEWISESMOOTH DYNAMICAL SYSTEMS
Cite this article as:
Zhusubaliyev Z. Т., Yanochkina О. О. BIFURCATIONS OF A TWODIMENSIONAL TORUS IN PIECEWISESMOOTH DYNAMICAL SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 6, pp. 86-98. DOI: https://doi.org/10.18500/0869-6632-2009-17-6-86-98
Considering a set of coupled nonautonomous differential equations with discontinuous righthand sides, we discuss two different scenarios for torus birth bifurcations in piecewisesmooth dynamical systems. One scenario is the continuous transformation of the stable equilibrium into an unstable focus period1 orbit surrounded by a resonant or ergodic torus. Another is the transition from a stable periodic orbit to an invariant torus through a bordercollision bifurcation in which two complexconjugate multipliers jump abruptly from the inside to the outside of the unit circle.
1. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью. М.: Наука, 1985.
2. Фейгин М.И. Вынужденные колебания систем с разрывными нелинейностями. М.: Наука, 1994.
3. Zhusubaliyev Zh. T., Mosekilde E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. Singapore: World Scientific, 2003.
4. Leine R.I., Nijmeijer H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Berlin: Springer Verlag, 2004.
5. Арнольд В.И., Афраймович В.С., Ильяшенко Ю.С., Шильников Л.П. Теория бифуркаций // Современные проблемы математики: фундаментальные направления /Под ред. В. И. Арнольда. М.: ВИНИТИ, 1986.
6. Anishchenko V.S., Astakhov V.V., Neiman A.B., Vadivasova T.E., Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Berlin: Springer, 2007.
7. Фейгин М.И. Удвоение периода колебаний при С-бифуркациях в кусочно-непрерывных системах // ПММ. 1970. Т. 34, вып. 5. С. 861.
8. di Bernardo M, Feigin M.I., Hogan S.J., Homer M.E. Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems // Chaos, Solitons and Fractals. 1999. Vol. 10, No 11. P. 1881.
9. Nusse H.E., Yorke J.A. Border-collision bifurcations including «period two to period three» for piecewise smooth systems // Physica D. 1992. No 57. P. 39.
10. Banerjee S., Ranjan P., Grebogi C. Bifurcations in two-dimensional piecewise smooth maps – theory and applications in switching circuits // IEEE Trans. Circ. Syst. I. 2000. Vol. 47, No 5. P. 633.
11. Zhusubaliyev Zh.T., Soukhoterin E.A., Mosekilde E. Border-collision bifurcations and chaotic oscillations in a piecewise-smooth dynamical system // Int. J. Bifurcation Chaos. 2001. Vol. 11, No 12. P. 1193.
12. di Bernardo M., Budd C. J., Champneys A.R. Grazing bifurcations in n-dimensional piecewise-smooth dynamical systems // Physica D. 2001. Vol. 160. P. 222.
13. Banerjee S., Verghese G.C. (Eds.) Nonlinear phenomena in power electronics. New York: IEEE Press, 2001.
14. Keener J., Sneyd J. Mathematical Physiology. New York: Springer Verlag, 1998.
15. Laugesen J., Mosekilde E. Border-collision bifurcations in a dynamic management game // Comp. Oper. Res. 2006. No 33. P. 464.
16. di Bernardo M., Budd C., Champneys A.R., Kowalczyk P., Nordmark A.B., Olivar G., Piiroinen P.T. Bifurcations in nonsmooth dynamical systems // SIAM Review. 2008. Vol. 50, No 4. P. 629.
17. Zhusubaliyev Zh. T., Mosekilde E. Torus birth bifurcation in a DC/DC converter // IEEE Trans. Circ. Syst. I. 2006. Vol. 53, No 8. P. 2006. 1839.
18. Zhusubaliyev Zh. T., Mosekilde E. Birth of bilayered torus and torus breakdown in a piecewise-smooth dynamical system // Phys. Lett. A. 2006. Vol. 351, No 3. P. 167.
19. Zhusubaliyev Zh. T., Mosekilde E., Maity S.M., Mohanan S., Banerjee S. Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation // Chaos. 2006. Vol. 16. P. 023122-1–023122-11.
20. Кобзев А.В. Многозонная импульсная модуляция. Новосибирск: Наука, 1979.
21. Кобзев А.В., Михальченко Г.Я., Музыченко Н.М. Модуляционные источники питания РЭА. Томск: Радио и связь. Томский отдел, 1990.
22. Lai J.S., Peng F.Z. Multilevel converters – a new breed of power converters // IEEE Trans. Ind. Appl. 1996. Vol. 32, No 3. P. 509.
23. Meynard T.A., Foch H., Thomas P., Courault J., Jakob R., Nahrstaedt M. Multicell converters: Basic concepts and industry applications // IEEE Trans. Ind. Electron. 2002. Vol. 49, No 5. P. 955.
24. Zhusubaliyev Zh. T., Mosekilde E. Direct transition from a stable equilibrium to quasiperiodicity in non-smooth systems // Phys. Lett. A. 2008. Vol. 372, No 13. P. 2237.
25. Гелиг А.Х., Чурилов А.Н. Колебания и устойчивость нелинейных импульсных систем. СПб.: Изд-во СПб ун-та, 1993.
26. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003.
BibTeX
author = {Z. Т. Zhusubaliyev and О. О. Yanochkina},
title = {BIFURCATIONS OF A TWODIMENSIONAL TORUS IN PIECEWISESMOOTH DYNAMICAL SYSTEMS},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/bifurcations-of-twodimensional-torus-in-piecewisesmooth-dynamical-systems},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-6-86-98},pages = {86--98},issn = {0869-6632},
keywords = {Piecewisesmooth dynamical systems,bordercollision bifurcation,invariant torus,equilibrium point},
abstract = {Considering a set of coupled nonautonomous differential equations with discontinuous righthand sides, we discuss two different scenarios for torus birth bifurcations in piecewisesmooth dynamical systems. One scenario is the continuous transformation of the stable equilibrium into an unstable focus period1 orbit surrounded by a resonant or ergodic torus. Another is the transition from a stable periodic orbit to an invariant torus through a bordercollision bifurcation in which two complexconjugate multipliers jump abruptly from the inside to the outside of the unit circle. }}