CIRCULAR NON­AUTONOMOUS GENERATOR OF HYPERBOLIC CHAOS


Cite this article as:

Kruglov V. P. CIRCULAR NON­AUTONOMOUS GENERATOR OF HYPERBOLIC CHAOS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 132-147. DOI: https://doi.org/10.18500/0869-6632-2010-18-5-132-147


A scheme of circular system is introduced, which is supposed to generate hyperbolic chaos. Its operation is based on doubling of phase on each complete cycle of the signal transmission through the feedback ring. That is a criterion for the attractor of Smale–Williams type to exist. Mathematically, the model is described by the fourth order nonautonomous system of ordinary differential equations. The equations for slowly varying complex amplitudes are derived, and the Poincar ́ e return map is obtained. Numerical simulation data are presented. The attractor of Smale–Williams type is observed in the Poincar ́ e cross­section. The computations indicate that the dynamics of phases is described approximately by the Bernoulli map. Lyapunov exponents for the Poincar ́ e map are estimated, and their dependence on parameters is plotted. Smooth dependence of the largest Lyapunov exponent on parameters supports the structural stability of the observed attractor.

DOI: 
10.18500/0869-6632-2010-18-5-132-147
Literature

1. Кузнецов С.П. Гиперболические странные аттракторы систем, допускающих физическую реализацию // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 4. С. 5.

2. Синай Я.Г. Как математики изучают хаос // Математическое просвещение. 2001. Сер. 3, вып. 5. С. 32.

3. Синай Я.Г. Стохастичность динамических систем // Нелинейные волны. М.: Наука, 1979. 192 с.

4. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2006. 290 c.

5. Shilnikov L. Mathematical Problems of Nonlinear Dynamics: Tutorial // International Journal of Bifurcation and Chaos, Vol.7, No 9, 1997. P. 1953.

6. Лоскутов А.Ю, Михайлов А.С. Основы теории сложных систем. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2007. 620 с.

7. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale-Williams type // Phys. Rev. Lett. 2005. Vol. 95. 144101.

8. Кузнецов C.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла–Вильямса // ЖЭТФ. 2006. Т. 129, No 2. С. 400.

9. Кузнецов С.П., Сатаев И.Р. Проверка условий гиперболичности хаотического аттрактора в системе связанных неавтономных осцилляторов ван дер Поля // Изв. вузов. Прикладная нелинейная динамика. 2006. Т. 14, No 5. С. 3.

10. Дмитриев А.С., Кислов В.Я. Стохастические колебания в радиофизике и электронике. М.: Наука, 1989. 280 с.

11. TSTOOL Home Page: http://www.physik3.gwdg.de/tstool/

12. Van der Pol B. A theory of the amplitude of free and forced triode vibrations // Radio Review. 1920. Vol. 1. P. 701, 754.

13. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. Гостехиздат, 1958. 406 с.

14. Андронов А.А., Витт А.А., Хайкин С.Ю. Теория колебаний: 2-е изд. М: Физматгиз, 1959. 916 с.

15. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физматлит, 2005. 292 c.

Heading: 
Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Круглов-IzvVUZ_AND-18-5-132,
author = {V. P. Kruglov},
title = {CIRCULAR NON­AUTONOMOUS GENERATOR OF HYPERBOLIC CHAOS},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/circular-nonautonomous-generator-of-hyperbolic-chaos},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-5-132-147},pages = {132--147},issn = {0869-6632},
keywords = {hyperbolic chaos,Smale–Williams attractor,Bernoulli map,structural stability.},
abstract = {A scheme of circular system is introduced, which is supposed to generate hyperbolic chaos. Its operation is based on doubling of phase on each complete cycle of the signal transmission through the feedback ring. That is a criterion for the attractor of Smale–Williams type to exist. Mathematically, the model is described by the fourth order nonautonomous system of ordinary differential equations. The equations for slowly varying complex amplitudes are derived, and the Poincar ́ e return map is obtained. Numerical simulation data are presented. The attractor of Smale–Williams type is observed in the Poincar ́ e cross­section. The computations indicate that the dynamics of phases is described approximately by the Bernoulli map. Lyapunov exponents for the Poincar ́ e map are estimated, and their dependence on parameters is plotted. Smooth dependence of the largest Lyapunov exponent on parameters supports the structural stability of the observed attractor. }}