COMPLEX STRUCTURE AND NONLINEAR BEHAVIOR OF VERY LOW FREQUENCY OF HEART RATE VARIABILITY: MODEL OF ANALYSIS, AND PRACTICAL APPLICATIONS


Cite this article as:

Fleishman А. N., Korablina Т. V., Petrovsky S. А., Martynov I. D. COMPLEX STRUCTURE AND NONLINEAR BEHAVIOR OF VERY LOW FREQUENCY OF HEART RATE VARIABILITY: MODEL OF ANALYSIS, AND PRACTICAL APPLICATIONS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 1, pp. 55-70. DOI: https://doi.org/10.18500/0869-6632-2014-22-1-55-70


Researched the structure of Very Low Frequency (VLF) spectrum of heart rate variability (HRV)  and its nonlinear behavior in a relationship with the energy of oscillations, baroreflex and parasympathetic activity at functional tests of low intensity in 100 subjects (seven-test, deep breathing), including active orthostatic test of 32 subjects with orthostatic tachycardia in comparison to the control group of 20 subjects. There were three stages of research. The first  stage: created the method of spectral analysis of separate components of VLF. On the basis of  comparative data of Fast Furrier Transform with Welch filters, autoregression, continuous wavelet analysis and Hilbert–Huang transform, for the first time it was shown that VLF has  separate 200, 100 and 50 sec oscillations (VLF200, VLF100, VLF50). The second stage: for evaluation of physiological properties of the separate oscillations, was conducted the analysis of  VLF structure in three groups of patients: (a) with a predominance of parasympathetic activity (HF) in the VLF spectrum, (b) with a dominance of 10 sec oscillations (LF), (c) with a severe depression of energy in all components of the spectrum. It was established that the individual components of VLF (VLF100 and VLF50) have a certain stability and partiall independence  from the changes of peripheral autonomic indices (LF/HF) at loads of low intensity. The third stage: analyzed features of VLF structure (VLF100 and VLF50) alone and in a conjunction with LF and HF, as well as heart rate and blood pressure in humans with orthostatic tachycardia with a predominance of parasympathetic activity at functional tests of low intensity (seven-test deep breathing) and at an active orthostatic test. Based on these studies it was concluded that the individual components in VLF structure (VLF100, VLF50) can demonstrate reciprocal relations at a load among themselves and in the LF/HF ratio, and play an adaptive role in the mechanisms of autonomic provision. Previously found regularities that are characteristic for the subjects with orthostatic tachycardia in the form of high-level LF turned out to be insufficient for the prognosis. Revealed the importance of VLF and its components, 100 and 50 sec oscillations at an orthostatic test in the prognosis of orthostatic tachycardia development. In 35% of patients with dysautonomia at high level of VLF100 power, tachycardia did not develop. In this case, VLF and its component parts did an important adaptive function. The analysis of a complex VLF structure contributes to the differential treatment and detection of central mechanisms of adaptation. Adaptive VLF functions were mainly registered at orthostatic load. In the proposed model of the descending neurosomatic control of autonomic regulation of HRV a very important role plays both neurogenic ways of regulation, and neuro-hormonal-metabolic ways, manifested in the complex VLF structure. Regarded the choice of ways and optimal models of regulation.

DOI: 
10.18500/0869-6632-2014-22-1-55-70
Literature

1. Ludwig C. Beitrage zur Kenntnis des Einflusses der Respirations bewegungen auf  ̈den Blutlauf im Aortensysteme // Arch. Anat. Physiol. Wiss. Med (Mьller Arch) 1847. P. 242.

2. Traube L. Uerperiodische Th  ̈ atigkeits–Ausserungen des vasomotorischen und Hem- mungs–Nervenzentrums // Centrablatt Med. Wiss. 1865. Vol. 56. P. 880.

3. Hering E. Uber den Einfluss der Athmung auf den Kreislauf.I. Mitteilung:  ̈ Uer  ̈ Athembewegun – gen des Gafassystems // Sber Akd Wiss Wien Math-naturwiss  ̈ Klasse 2. Abteilung 60. 1869. P. 829.

4. Mayer S. Studein zur Physiologie des Herzensund der Blutgefдsse: V: Uber spontane  ̈ Blutdruckschwankungen // Sber Akd Wiss. Wien. 1876. Vol. 74. P. 281.

5. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use / Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology //Circulation. 1996. Vol. 95, No 5. P. 1043.

6. Yamamoto Y., Kiyono K., Struzik Z.R. Measurement, analysis, and interpretation of long-term heart rate variability // Filtration & Separation, 2004; Annual Conference, Vol. 3.

7. Ivanov P. Ch., Amaral L. A. N., Goldberger A. L., Havlin Sh., Rosenblum M. G., Stanley H. E., Struzik Z. R. From 1/f noise to multifractal cascades in heartbeat dynamics // Chaos. 2001. Vol. 11, No 3.

8. Ivanov P. Ch., Amaral L. A. N., Goldberger A. L., Havlin Sh., Rosenblum M. G., Struzik Z. R. & Stanley H. E. Multifractality in human heartbeat dynamics // Nature. 1999.Vol. 399. P. 461.

9. Sayers B. Mc A. The analysis of heart rate variability // Ergonom. 1973. Vol. 16. P. 85.

10. Akselrod S., Gordon D., Ubel F.A., Shannon D.C., Berger A.C., Cohen R.J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control // Science. 1981. Vol. 213. P. 220.

11. Akselrod S., Gordon D., Madwed J.B. et al. Hemodynamic regulation: investigation  by spectral analysis // Am. J. Physiol. 1985. Vol. 249. P. 867–875.

12. Taylor J.A., Carr D.L., Myers C.W., Eckberg D.L. Mechanisms underlying very-low-frequency RR-interval oscillations in humans // Circulation. 1998. Vol. 98, No 6. P. 547.

13. Флейшман А.Н. Медленные колебания гемодинамики. Теория, практическое применение в клинической медицине и профилактике. Новосибирск: Изд-во «Наука», 1999.

14. Kleiger R.E., Miller J.P., Bigger J.T., Moss A.J., and the Multicenter post-infarction research group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction // Am. J. Cardiol. 1987. Vol. 59. P. 256.

15. Клещеногов С.А., Флейшман А.Н. Изучение патофизиологических особенностей развития беременности у здоровых женщин с различной спектральной мощностью вариабельности ритма сердца, показателями системной гемодинамики и массой тела // Инженеринг в медицине: колебательные процессы гемодинамики. Пульсация и флюктуация сердечно- сосудистой системы. Сб. науч. тр. Симпоз. 30 мая – 1 июня 2000. Челябинск. 2000. С.120–128.

16. Zuanetti G., Neilson J.M.M., Latini R., Santoro E., Maggioni A. P., Ewing D.J. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era // Circulation. 1996. Vol. 94. P. 432.

17. Флейшман А.Н. Энергодефицитные состояния, нейровегетативная регуляция физиологических функций и вариабельности ритма сердца. Теоретические и прикладные аспекты нелинейной динамики в физиологии и медицине // Материалы IV всероссийского симпозиума с международным участием и II школы-семинара. Медленные колебательные процессы в организме человека. Новокузнецк 24–27 мая 2005. Стр. 10–19.

18. Radaelli A., Castiglioni P., Centola M., Cesana F., Balestri G., Ferrari A. U., Di Rienzo M. Adrenergic origin of very low frequency blood pressure oscillations in the unanesthetized rat // Am. J. Physiol. 2006. Vol. 290. P. 357.

19. Флейшман А.Н., Шумейко Н.И., Карпенко С.В., Син А.Ф., Дингес В.Р., Голик А.С., Анпилогов К.А. Нейровегетативные аспекты адаптации горноспасателей к изолирующим средствам индивидуальной защиты. 15–18 мая 2007. Новокузнецк. // Материалы V всероссийского симпозиума с международным участием и III школы-семинара. Медленные колебательные процессы в организме человека. Теоретические и практические аспекты нелинейной динамики в физиологии и медицине. 2007. Стр. 164–174.

20. Григорьев Е.В., Слепушкин В.В., Мулов А.Д. Метаболические аспекты вариабельности сердечного ритма у больных в критическом состоянии // В сб. Медленные колебательные процессы в организме человека. Теория. Практическое применение в клинической медицине и профилактике. Труды II симпозиума. Новокузнецк, 1999. С. 126–130.

21. Su Sh., Lampert R., Lee F., Douglas B. J., Snieder H., Jones L., Murrah N.V., Goldberg J. and Vaccarino V. Common genes contribute to depressive symptoms and heart rate variability // Twin Res. Hum. Genet. 2010. Vol. 13, No1. P. 1.

22. Thayer Ju. F., Еhs F., Fredrikson M., Sollers J.J., Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health // Neuroscience and Biobehavioral Reviews. 2012.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Флейшман-IzvVUZ_AND-22-1-55,
author = {А. N. Fleishman and Т V. Korablina and S. А. Petrovsky and I. D. Martynov},
title = {COMPLEX STRUCTURE AND NONLINEAR BEHAVIOR OF VERY LOW FREQUENCY OF HEART RATE VARIABILITY: MODEL OF ANALYSIS, AND PRACTICAL APPLICATIONS},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/complex-structure-and-nonlinear-behavior-of-very-low-frequency-of-heart-rate-variability},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-1-55-70},pages = {55--70},issn = {0869-6632},
keywords = {Complex structure,very low frequency,nonlinear dynamics,heart rate variability,disautonomia,orthostasis,syncope,orthostatic tachycardia,models of analysis.},
abstract = {Researched the structure of Very Low Frequency (VLF) spectrum of heart rate variability (HRV)  and its nonlinear behavior in a relationship with the energy of oscillations, baroreflex and parasympathetic activity at functional tests of low intensity in 100 subjects (seven-test, deep breathing), including active orthostatic test of 32 subjects with orthostatic tachycardia in comparison to the control group of 20 subjects. There were three stages of research. The first  stage: created the method of spectral analysis of separate components of VLF. On the basis of  comparative data of Fast Furrier Transform with Welch filters, autoregression, continuous wavelet analysis and Hilbert–Huang transform, for the first time it was shown that VLF has  separate 200, 100 and 50 sec oscillations (VLF200, VLF100, VLF50). The second stage: for evaluation of physiological properties of the separate oscillations, was conducted the analysis of  VLF structure in three groups of patients: (a) with a predominance of parasympathetic activity (HF) in the VLF spectrum, (b) with a dominance of 10 sec oscillations (LF), (c) with a severe depression of energy in all components of the spectrum. It was established that the individual components of VLF (VLF100 and VLF50) have a certain stability and partiall independence  from the changes of peripheral autonomic indices (LF/HF) at loads of low intensity. The third stage: analyzed features of VLF structure (VLF100 and VLF50) alone and in a conjunction with LF and HF, as well as heart rate and blood pressure in humans with orthostatic tachycardia with a predominance of parasympathetic activity at functional tests of low intensity (seven-test deep breathing) and at an active orthostatic test. Based on these studies it was concluded that the individual components in VLF structure (VLF100, VLF50) can demonstrate reciprocal relations at a load among themselves and in the LF/HF ratio, and play an adaptive role in the mechanisms of autonomic provision. Previously found regularities that are characteristic for the subjects with orthostatic tachycardia in the form of high-level LF turned out to be insufficient for the prognosis. Revealed the importance of VLF and its components, 100 and 50 sec oscillations at an orthostatic test in the prognosis of orthostatic tachycardia development. In 35% of patients with dysautonomia at high level of VLF100 power, tachycardia did not develop. In this case, VLF and its component parts did an important adaptive function. The analysis of a complex VLF structure contributes to the differential treatment and detection of central mechanisms of adaptation. Adaptive VLF functions were mainly registered at orthostatic load. In the proposed model of the descending neurosomatic control of autonomic regulation of HRV a very important role plays both neurogenic ways of regulation, and neuro-hormonal-metabolic ways, manifested in the complex VLF structure. Regarded the choice of ways and optimal models of regulation. }}