DETERMINISTIC AND STOCHASTIC STABILITY ANALYSIS FOR GLYCOLITIC OSCILLATOR


Cite this article as:

Ryashko L. B., Smirnov А. V. DETERMINISTIC AND STOCHASTIC STABILITY ANALYSIS FOR GLYCOLITIC OSCILLATOR. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 6, pp. 99-112. DOI: https://doi.org/10.18500/0869-6632-2005-13-5-99-112


The methods of sensitivity analysis of cycles under deterministic and stochastic disturbances for Higgins model describing glycolytic self-oscillations are considered. Two approaches connected with local exponents and stochastic sensitivity function are compared. The most sensitive parts of cycles are discovered. It was found that some parts of cycle lose stochastic stability along with stability increasing of cycle as whole.

Key words: 
-
DOI: 
10.18500/0869-6632-2005-13-5-99-112
Literature

1. Higgins J. // J.Ind.Eng.Chem. 1967. Vol. 59, No 5. P. 18.

2. Higgins J. // Proc.N.A.S.(USA). 1964. Vol. 51. P. 989.

3. Sel’kov E.E. // Eur.J.Biochem. 1968. No 4. P. 79.

4. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическое моделирование в биофизике. М.: Наука, 1975. С. 61, 258.

5. Гарел Д., Гарел О. Колебательные химические реакции. М.: Мир, 1986.

6. Tomita К., Daido H. Possibility of chaotic behaviour and multi-basins in forced glycolytic oscillations // Physics Letters A. 1980. Vol. 79, No 2, 3. P. 133.

7. Kurrer C., Schulten K. Effect of noise and perturbations on limit cycle systems // Physica D. 1991. Vol. 50. P. 311.

8. Ali F., Menzinger M. On the local stability of limit cycle // Chaos. 1999. Vol. 9, No 2. P. 348.

9. Рытов С.М. Флуктуации в автоколебательных системах томсоновского типа. I // ЖЭТФ. 1955. Т. 29, вып. 3(9). С. 304.

10. Рытов С.М. Флуктуации в автоколебательных системах томсоновского типа. II // Там же. С. 315.

11. Dyckman M., Chu X., Ross J. Stationary probability distribution near stable limitcycles far from Hopf bifurcation points // Physical Review E. 1993. Vol. 48, No 3. P. 1646.

12. Кузнецов А.П., Капустина Ю.В. Свойства скейлинга при переходе к хаосу в модельных отображениях с шумом // Известия вузов. Прикладная нелинейная динамика. 2000. Т. 8, No 6. C. 78.

13. Копейкин А.С, Вадивасова Т.Е., Анищенко B.C. Особенности процесса установления вероятностной меры на хаотических аттракторах в системах Лоренца и Ресслера с учетом флуктуаций // Известия вузов. Прикладная нелинейная динамика. 2000. Т. 8, No 6. C. 65.

14. Вентцель А.Д., Фрейдлин М.И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука, 1979. С. 424.

15. Мильштейн Г.Н., Ряшко Л.Б. Первое приближение квазипотенциала в задачах об устойчивости систем со случайными невырожденными возмущениями // Прикл. математика и механика. 1995. Т. 59, вып. 1. С. 51.

16. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of the stochastically forced Lorenz model cycles under period-doubling bifurcations // Dynamic Systems and Applications. 2002. Vol. 11, No 2. P. 293.

17. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of the stochastically and periodically forced Brusselator // Physica A. 2000. 728. P. 126.

18. Башкирцева И.А., Смирнов А.В., Ряшко Л.Б. Стохастическая устойчивость гликолитического осциллятора // Материалы III Уральской научно-практической  конференции «Математическое моделирование в медицине и биологии». 2001. С. 18.

19. Башкирцева И.А., Смирнов А.В., Ряшко Л.Б. Сравнительный анализ устойчивости гликолитического осциллятора к детерминированным и случайным возмущениям // Материалы 33-й Региональной молодежной школы-конференции «Проблемы теоретической и прикладной математики». 2002. С. 107.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Ряшко -IzvVUZ_AND-13-6-99,
author = {L. B. Ryashko and А. V. Smirnov},
title = {DETERMINISTIC AND STOCHASTIC STABILITY ANALYSIS FOR GLYCOLITIC OSCILLATOR},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/deterministic-and-stochastic-stability-analysis-for-glycolitic-oscillator},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-5-99-112},pages = {99--112},issn = {0869-6632},
keywords = {-},
abstract = {The methods of sensitivity analysis of cycles under deterministic and stochastic disturbances for Higgins model describing glycolytic self-oscillations are considered. Two approaches connected with local exponents and stochastic sensitivity function are compared. The most sensitive parts of cycles are discovered. It was found that some parts of cycle lose stochastic stability along with stability increasing of cycle as whole. }}