DEVELOPMENT OF METHODS OF GYROTRONS ELECTRON-OPTICS SYSTEMS WITH AXIAL SYMMETRY DISTORTION
Cite this article as:
Semenov E. S., Plankin O. P., Rozental R. M. DEVELOPMENT OF METHODS OF GYROTRONS ELECTRON-OPTICS SYSTEMS WITH AXIAL SYMMETRY DISTORTION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 3, pp. 94-105. DOI: https://doi.org/10.18500/0869-6632-2015-23-3-94-105
The simulation technique of helical beam formation system of gyrotrons with typical axial symmetry distortion is presented. The simulation of the second harmonic magnetron-injection gun for 260 GHz band gyrotron with 0.5 mm beam axis displacement was made. It was shown that displacement of axis beam has a significant effect upon the angular distribution of pitch-factor.
1. Guide to State-of-the-Art Electron Devices / Edited by Prof. Dr. J.N. Burghartz. John Wiley & Sons, Ltd., 2013.
2. Thumm M. Recent advances in the worldwide fusion gyrotron development // IEEE Transactions on Plasma Science. 2014. Vol. 42, No 3. P. 590.
3. Singh U., Kumar N., Sinha A.K. Magnetron injection gun for a short pulse, 0.67 THz gyrotron for remote detection of radioactive materials // IEEE Transactions on Terahertz Science and Technology. 2014. Vol. 4, No 4. P.509.
4. Glyavin M.Yu., Ginzburg N.S., Goldenberg A.L., Denisov G.G., Luchinin A.G., Manuilov V.N., Zapevalov V.E., Zotova I.V. THz gyrotrons: Status and possible optimizations // Terahertz Science and Technology. 2012. Vol. 5, No 2. P. 67.
5. Han S.-T., Park W.K., Chun H.S. Development of sub-THz gyrotron for real-time food inspection // 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). 2011. P. 1.
6. Yuan X., Li X., Huang Y., Pu W., Van Y. Research on a magnetron injection electron gun based on carbon nanotube cold cathode // Technical Digest of 27th International Vacuum Nanoelectronics Conference, 6–10 July 2014. Engelberg, Switzerland. P. 1-13.
7. Orbach Y., Ben-Moshe R., Pilossof M., Einat M. Gyrotron with dual electrode ferroelectric cathode operating at high repetition rate and long pulse // IEEE Transactions on Electron Devices. 2014. Vol. 61, No 3. P. 921.
8. Akimov P.L., Kuzmich C.V., Melnychuk V.A., Nikitin A.P., Chudin V.G., Sechin H.E., Chadaev N.N., Bohoslovskaya A.B. Project of electron gun for microwave devices with thermally expanded graphite cathodes // 10th International Vacuum Electron Sources Conference (IVESC). Saint Petersburg, 30 June–4 July 2014. P.1.
9. Fu W., Yan Y., Yuan X., Liu S. Two-beam magnetron injection guns for coaxial gyrotron with two electron beams // Phys. Plasmas. 2009. Vol. 16. P.023103.
10. Kumar N., Singh U., Kumar A., Khatun H., Sinha A.K. On the design of a high-efficiency double-beam gyrotron // IEEE Transactions on Plasma Science. 2011. Vol. 39, No 9. P.1781.
11. Glyavin M., Manuilov V., Idehara T. A double-beam magnetron-injection gun for third-harmonic continuous wave 1-THz gyrotron // Physics of Plasmas. 2013. Vol. 20. P. 123303.
12. Louksha O.I., Samsonov D.B., Sominski G.G., Syomin S.V. Suppression of emission nonuniformity effect in gyrotrons // 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2014. P. 1.
13. Lygin V.K., Tsimring Sh.E. // ZhTF. 1973. Vol. 43, No 8. P. 1695 (in Russian).
14. Tsimring Sh.E. On the spread of velocities in helical electron beams // Radiophysics and Quantum Electronics. 1972. Vol. 15, No 8. P. 952.
15. Manuilov V.N., Rayskiy B.V., Soluyanova E.A., Tsimring Sh.E. // Radiotekhnika i Elektronika, 1995. Vol. 40, No 4. P. 648 (in Russian).
16. Krivosheev P.V., Lygin V.K., Manuilov V.N., Tsimring Sh.E. Numerical simulation models of focussing systems of intense gyrotron helical electron beams // Int. J. of Infrared and MM Waves. 2001. Vol. 22, No 8. P. 1119.
17. Plankin O.P., Semenov V.E. ANGEL 2DS Program Package for Gyrotron Gun Modeling: User’s Guide. Nizhny Novgorod: IAP RAS, 2011 (in Russian).
18. Tsimring Sh.E. Electron beams and microwave vacuum electronics. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007.
19. Ilyin V.P. Numerical methods of electrophysics problem solving. M.: Nauka, 1985 (in Russian).
20. Alievsky B.L., Orlov V.L. Calculation of magnetic fields of axisymmetric coils: Reference guide. M.: Enegroatomizdat, 1983 (in Russian).
21. Semenov E.S., Yunakovsky A.D. Calculation of the static magnetic field of a system of solenoids // Radiophysics and Quantum Electronics. 2010. Vol. 53, No 12. P. 717.
22. Penzyakov V.V. // Elektronnaya Tekhnica. Ser.1. Elektronica SVCh. 1966. Vol. 1. P. 41 (in Russian).
23. Vashkovsky A.V., Ovcharov V.T. // Elektronnaya Tekhnica. Ser.1. Elektronica SVCh. 1971. No 9. P. 34 (in Russian).
24. Lygin V.K., Manuilov V.E., Tsimring Sh.E. // Elektronnaya Tekhnica. Ser.1. Elektronica SVCh. 1987. Vol.7 (401). P. 36 (in Russian).
25. Plankin O.P., Semenov V.E. Trajectory analysis of the electronic-optical system of technological gyrotron // Vestnik NSU. Series: «Physics». 2013. Vol. 8, Iss. 2. P. 44 (in Russian).
26. Zapevalov V.E., Kornishin S.Yu., Kotov A.V., Kuftin A.N., Malygin O.V., Manuilov V.N., Sedov A.S., Tsalolikhin V.I. System for the formation of an electron beam in a 258 GHz gyrotron designed for experiments on dynamic polarization of nuclei // Radiophysics and Quantum Electronics. 2010. Vol. 53, No 4. P. 229.
27. Venediktov N.P., Dubrov V.V., Zapevalov V.E., Kornishin S.Yu., Kotov A.V., Kuftin A.N., Malygin O.V., Sedov A.S., Fiks A.Sh., Tsalolikhin V.I. Experimental study of a continuous-wave high-stability second-harmonic gyrotron for spectroscopy of dynamically polarized nuclei // Radiophysics and Quantum Electronics. 2010. Vol. 53, No 4. P. 237.
28. Zavolskiy N.A., Zapevalov V.E., Moiseev M.A., Sedov A.S. Influence of the axial misalignment of the electron beam and the cavity on the gyrotron parameters // Radiophysics and Quantum Electronics. 2011. Vol. 54, No 6. P. 402.
BibTeX
author = {E. S. Semenov and O. P. Plankin and R. M. Rozental},
title = {DEVELOPMENT OF METHODS OF GYROTRONS ELECTRON-OPTICS SYSTEMS WITH AXIAL SYMMETRY DISTORTION},
year = {2015},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {23},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/development-of-methods-of-gyrotrons-electron-optics-systems-with-axial-symmetry-distortion},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-3-94-105},pages = {94--105},issn = {0869-6632},
keywords = {Gyrotron,electron optics,magnetron-injection gun.},
abstract = {The simulation technique of helical beam formation system of gyrotrons with typical axial symmetry distortion is presented. The simulation of the second harmonic magnetron-injection gun for 260 GHz band gyrotron with 0.5 mm beam axis displacement was made. It was shown that displacement of axis beam has a significant effect upon the angular distribution of pitch-factor. Download full version }}