DYNAMICS OF SMALL GROUPS OF INTERACTING NEPHRONS IN NORMAL AND RENAL HYPERTENSION STATES


Cite this article as:

Pavlova O. N., Pavlov A. N., Sosnovtseva O. V. DYNAMICS OF SMALL GROUPS OF INTERACTING NEPHRONS IN NORMAL AND RENAL HYPERTENSION STATES. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 6, pp. 3-24. DOI: https://doi.org/10.18500/0869-6632-2010-18-6-3-24


Based on the wavelet­analysis of experimental data, we study in this paper the phenomenon of synchronization of oscillations in the dynamics of small groups of structural units of the kidney (paired nephrons and triplets). Distinctions between synchronous dynamics of interacting nephrons in normal and hypertensive rats are discussed. We show that mean duration of synchronous oscillations is about 3 times less in hypertensive rats. We state that in­phase synchronization is the most typical case in the dynamics of interacting nephrons (more than 90% of experimental data). We compare the results of experimental data analysis and the results of mathematical modeling of the dynamics of interacting units of the kidney.

DOI: 
10.18500/0869-6632-2010-18-6-3-24
Literature

1. Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Chaos in blood flow control in genetic and renovascular hypertensive rats // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1991. Vol. 261. P. F400.

2. Yip K.-P., Marsh D.J., Holstein-Rathlou N.-H. Low dimensional chaos in renal blood flow control in genetic and experimental hypertension // Physica D. 1995. Vol. 80. P. 95.

3. Holstein-Rathlou N.-H., Yip K.-P., Sosnovtseva O.V., Mosekilde E. Synchronization phenomena in nephron-nephron interaction // Chaos. 2001. Vol. 11. P. 417.

4. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H. Bimodal oscillations in nephron autoregulation // Phys. Rev. E. 2002. Vol. 66. P. 061909.

5. Marsh D.J., Sosnovtseva O.V., Pavlov A.N., Yip K.-P., Holstein-Rathlou N.-H. Frequency encoding in renal blood flow regulation // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005. Vol. 288. P. R1160.

6. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of wavelet-based tools to study the dynamics of biological processes // Briefings in Bioinformatics. 2006. Vol. 7. P. 375.

7. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // Am. J. Physiol. Renal Physiol. 2007. Vol. 293. P. F1545.

8. Marsh D.J., Sosnovtseva O.V., Mosekilde E., Holstein-Rathlou N.-H. Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree // Chaos. 2007. Vol. 17. P. 015114.

9. Sakai T., Craig D.A., Wexler A.S., Marsh D.J. Fluid waves in renal tubules // Biophys. J. 1986. Vol. 50. P. 805.

10. Layton H.E., Pitman E.B., Moore L.C. Nonlinear filter properties of the thick ascending limb // Am. J. Physiol. Renal Physiol. 1997. Vol. 273. P. F625.

11. Casellas D., Moore L.C. Autoregulation and tubuloglomerular feedback in juxtame-dullary glomerular arterioles // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1990. Vol. 258. P. F660.

12. Gonzalez-Fernandez J.M., Ermentrout G.B. On the origin and dynamics of the vasomotion of small arteries // Math. Biosci. 1994. Vol. 240. P. 127.

13. Horowitz A., Menice C.B., Laporte R., Morgan K.G. Mechanisms of smooth muscle contraction // Physiol. Rev. 1996. Vol. 76. P. 967.

14. Holstein-Rathlou N.-H., He J., Wagner A.J., Marsh D.J. Patterns of blood pressure variability in normotensive and hypertensive rats // Am. J. Physiol. Regul. Integr. Comp. Physiol. 1995. Vol. 269. P. R1230.

15. Holstein-Rathlou N.-H., Leyssac P.P. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats // Acta Physiol. Scand. 1986. Vol. 126. P. 333.

16. Leyssac P.P., Holstein-Rathlou N.-H. Tubulo-glomerular feedback response: enhancement in adult spontaneously hypertensive rats and effects of anaesthetics // Pflugers  ̈ Arch. 1989. Vol. 413. P. 267.

17. Wang H., Kin S., Ju K., Chon K.H. A high resolution approach to estimating time-frequency spectra and their amplitudes // Ann. Biomed. Eng. 2006. Vol. 34. P. 326.

18. Quiroga R., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals // Phys. Rev. E. 2002. Vol. 65. P. 041903.

19. Huang N.E., Shen Z., Long S.R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A. 1998. Vol. 454. P. 903.

20. Mallat S.G. A wavelet tour of signal processing. New York: Academic Press, 1998.

21. Addison P.S. The illustrated wavelet transform handbook: applications in science, engineering, medicine and finance. Philadelphia: IOP Publishing, 2002.

22. Grossman A., Morlet J. Decomposition of Hardy functions into square intergable wavelets of constant shape // SIAM J. Math. Anal. 1984. Vol. 15. P. 723.

23. Kaiser G. A friendly guide to wavelets. Boston: Birkhauser, 1994.  ̈

24. Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. Amer. Meteor. Soc. 1998. Vol. 79. P. 61.

25. Павлов А.Н., Сосновцева О.В. Применение двойного вейвлет-анализа для исследования эффектов модуляции в динамике нефронов // Изв. вузов. Прикладная нелинейная динамика. 2004. Т. 12, No 6. C. 105.

26. Павлов А.Н., Павлова О.Н., Сосновцева О.В. Взаимодействие ритмов в динамике структурных элементов почек // Изв. вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 2. С. 14.

27. Анисимов А.А., Павлова О.Н., Тупицын А.Н., Павлов А.Н. Вейвлет-анализ чирпов // Изв. вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 5. С. 3.

28. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ в приложениях к задачам нелинейной динамики. Cаратов: ГосУНЦ «Колледж», 2002.

29. Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. М.: Физматлит, 2003.

30. Marsh D.J., Sosnovtseva O.V., Chon K.H., Holstein-Rathlou N.-H. Nonlinear interactions in renal blood flow regulation // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005. Vol. 288. P. R1143.

31. Holstein-Rathlou N.-H., Marsh D.J. A dynamic model of the tubuloglomerular feedback mechanism // Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1990. Vol. 258. P. F1448.

32. Holstein-Rathlou N.-H., Marsh D.J. A dynamic model of renal blood flow autoregulation // Bull. Math. Biol. 1994. Vol. 56. P. 411.

33. Barfred M., Mosekilde E., Holstein-Rathlou N.-H. Bifurcation analysis of nephron pressure and flow regulation // Chaos. 1996. Vol. 6. P. 280.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Павлова -IzvVUZ_AND-18-6-3,
author = {O. N. Pavlova and A. N. Pavlov and O. V. Sosnovtseva},
title = {DYNAMICS OF SMALL GROUPS OF INTERACTING NEPHRONS IN NORMAL AND RENAL HYPERTENSION STATES},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/dynamics-of-small-groups-of-interacting-nephrons-in-normal-and-renal-hypertension-states},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-6-3-24},pages = {3--24},issn = {0869-6632},
keywords = {renal blood­flow autoregulation,Nephrons,rhythm dynamics,wavelet­analysis.},
abstract = {Based on the wavelet­analysis of experimental data, we study in this paper the phenomenon of synchronization of oscillations in the dynamics of small groups of structural units of the kidney (paired nephrons and triplets). Distinctions between synchronous dynamics of interacting nephrons in normal and hypertensive rats are discussed. We show that mean duration of synchronous oscillations is about 3 times less in hypertensive rats. We state that in­phase synchronization is the most typical case in the dynamics of interacting nephrons (more than 90% of experimental data). We compare the results of experimental data analysis and the results of mathematical modeling of the dynamics of interacting units of the kidney. }}