DYNAMICS OF TWO NONLINEARLY COUPLED NONIDENTICAL LANG–KOBAYSHI OSCILLATORS
Cite this article as:
Kochkurov L. А., Balakin М. I. DYNAMICS OF TWO NONLINEARLY COUPLED NONIDENTICAL LANG–KOBAYSHI OSCILLATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 3, pp. 29-36. DOI: https://doi.org/10.18500/0869-6632-2013-21-3-29-36
One-parameter study of system of two nonlinearly coupled nonidentical Lang–Kobayshi oscillators is presented. The time delay influence on oscillation regimes in the system is studied. The posibility of periodic and quasiperiodic oscillations is shown. Variation of delay time leads to bifurcations and an alternation of periodic and quasiperiodic oscillations. Quasiperiodic oscillations are excited as a result of Neimark–Sacker bifurcation.
1. Van Tartwijk G.H.M. and Lenstra D. Semiconductor lasers with optical injection and feedback // J. Opt. B. Quantum Semiclassical Opt. 1995. Vol. 7. P. 87.
2. Van Tartwijk G.H.M., and Agrawal G.P. Laser instabilities: A modern perspective // Prog. Quantum Electron. 1998. Vol. 22. P. 43.
3. Lang R., and Kobayshi K. External optical feedback effects on semiconductor injection laser properties // IEEE J. Quantum. Electron. 1980. Vol. 16. 347.
4. Alsing P.M., Kovanis V., Gavrielides A., and Erneux T. Mechanism for period doubling in a semiconductor laser subject to optical injection // Phys. Rev. A. 1996. Vol. 53. 4429.
5. Flunkert V., D’Huys O., Danckaert J., Fischer I., and Scholl E. ̈ Bubbling in delay-coupled lasers // Phys. Rev. E. 2009. Vol. 79. 065201(R).
6. Masoller C. Noise-induced resonance in delayed feedback systems // Phys. Rev. Lett. 2002. Vol. 88. 034102.
7. Tronciu V.Z., Wunsche H.-J., Wolfrum M., and Radziunas M. ̈ Semiconductor laser under resonant feedback from a Fabry–Perot resonator: Stability of continuous-wave operation // Phys. Rev. E. 2006. Vol. 73. 046205.
8. Fiedler B., Yanchuk S., Flunkert V., Hovel P., W ̈ unsche H.-J., and Sch ̈ oll E. ̈ Delaystabilization of rotating waves near fold bifurcation and application to all-optical control of a semiconductor laser // Phys. Rev. E. 2008. Vol. 77. 066207.
9. Tobbens A., and Parlitz U. ̈ Dynamics of semiconductor lasers with external multicavities // Phys. Rev. E. 2008. Vol. 78. 016210.
10. Haegeman B., Engelborghs K., Roose D., Pieroux D., and Erneux T. Stability and rupture of bifurcation bridges in semiconductor lasers subject to optical feedback // Phys. Rev. E. 2002. Vol. 66. 046216.
11. Yanchuck S., and Wolfrum M. A multiple time scale approach to the stability of external cavity modes in the Lang–Kobayshi system using the limit of large delay // J. Applied Dynamical Systems. 2010. Vol. 9, No 2. P. 519.
12. Krauskopf B., van Tartwijk G.H.M., and Gray G.R. Symmetry properties of lasers subject to optical feedback // Opt. Commun. 2000. Vol. 177. P. 347.
13. Heil T., Fischer T., Elsasser W., Krauskopf B., Green K., and Gavrielides A. ̈ Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms // Phys. Rev. E. 2003. Vol. 67(6). 066214.
14. Wolfrum M. and Turaev D. Instabilities of lasers with moderately delayed optical feedback // Opt. Commun. 2002. Vol. 212. P. 127.
15. Kochkurov L., Balakin M., Melnikov L., Astakhov V. Numerical modeling of terahertz generation via difference-frequency mixing in two-color laser // Proc. SPIE. 2013. Vol. 8699. 869912.
16. Engelborghs K., Luzyanina T., and Roose D. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL // ACM Trans. Math. Softw. 2002. Vol. 28, No 1. P. 1.
17. Flunkert V. Delay-Coupled Complex Systems and Applications to Lasers // Springer Theses. 2011. 180 p.
BibTeX
author = {L. А. Kochkurov and М. I. Balakin},
title = {DYNAMICS OF TWO NONLINEARLY COUPLED NONIDENTICAL LANG–KOBAYSHI OSCILLATORS},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/dynamics-of-two-nonlinearly-coupled-nonidentical-lang-kobayshi-oscillators},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-3-29-36},pages = {29--36},issn = {0869-6632},
keywords = {Lang–Kobayshi equations,nonlinear coupling,bifurcations.},
abstract = {One-parameter study of system of two nonlinearly coupled nonidentical Lang–Kobayshi oscillators is presented. The time delay influence on oscillation regimes in the system is studied. The posibility of periodic and quasiperiodic oscillations is shown. Variation of delay time leads to bifurcations and an alternation of periodic and quasiperiodic oscillations. Quasiperiodic oscillations are excited as a result of Neimark–Sacker bifurcation. }}