ELECTRODYNAMICAL CHARACTERISTICSOF PERIODIC FERROMAGNETIC STRUCTURES


Cite this article as:

Rozhnev А. G., Sadovnikov А. V. ELECTRODYNAMICAL CHARACTERISTICSOF PERIODIC FERROMAGNETIC STRUCTURES. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 1, pp. 143-159. DOI: https://doi.org/10.18500/0869-6632-2012-20-1-143-159


The periodic structure consisting of a shallow grooves on a surface of a ferromagnetic film was investigated. The electrodynamical characteristics of propagation of the surface magnetostatic wave in this structure were obtained. The 2D model of the periodical Yttrium Iron Garnet structure was numerically studied by the algorithm based on the Finite Element method. The spatial distribution of the electric and magnetic field components in different points of dispersion characteristics was studied in detail. The comparison of experimental data and numerical results was carried out.

DOI: 
10.18500/0869-6632-2012-20-1-143-159
Literature

1. Neusser S., Grundler D. Magnonics: Spin waves on the nanoscale // Adv. Mater. 2009. Vol. 21. P. 2927.

2. Klos J.W., Krawczyk M., Sokolovskyy M. Bulk and edge modes in two-dimensional magnonic crystal slab// Journal of Applied Physics. 2011. Vol. 109, No 07. D311.

3. Chumak A.V., Neumann T., Serga A.A., Hillebrands B., Kostylev M.P. A current-controlled, dynamic magnonic crystal // J. Phys. D: Appl. Phys. 2009. Vol. 42. 205005.

4. Stancil D., Prabhakar A. Spin waves. Theory and applications. NY: Springer science, 2009.

5. Kruglyak V.V., Demokritov S.O., Grundler D. Magnonics // J. Phys. D: Appl. Phys. 2010. Vol. 43. 264001.

6. Зенкевич O., Морган K. Конечные элементы и аппроксимация. М.: Мир, 1986.

7. Taflove A., Hagness S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood. MA: Artech House, 2005.

8. Silvester P.P., Ferrari R.L. Finite Elements for Electrical Engineers: 3rd ed. Cambridge University Press, 1996.

9. Landau L.D., Lifshitz E.M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies // Phys. Z. Soviet Union. 1935. Vol. 8, No 2. P. 153.

10. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.

11. Jin J. The Finite Element Method in Electromagnetics. 2nd ed. Wiley-IEEE Press, 2002.

12. Lee J.F., Sun D.K., Cendes Z.J. Full-wave analysis of dielectric waveguides using tangential vector finite elements // IEEE Trans. 1991. Vol. MTT-39, No 8. P. 1262.

13. Sheng X.Q., Xu S. An efficient high-order mixed-edge rectangular-elements method for lossy anisotropic dielectric waveguides // IEEE Trans. 1997. Vol. MTT-45, No 7. P. 1009.

14. Бровко А.В., Рожнев А.Г., Маненков А.Б. Конечноэлементная модель волоконно-оптического поляризатора // Изв. вузов. Радиофиз. 2001. Т. 44, No 7. С. 615.

15. Valor L., Zapata J. Efficient finite element analysis of waveguides with lossy inhomogeneous anisotropic materials characterized by arbitrary permittivity and permeability tensors // IEEE Trans. Microw. Theory Tech. 1995. Vol. 43, No 10. P. 2452.

16. Koshiba M., Maruyama S., Hirayama K. A vector finite element method with the high-order mixed-interpolation-type triangular element for optical waveguide problems // J. Lightw. Technol. 1994. Vol. 12, No 3. P. 495.

17. Damon R.W., Eshbach J.R. Magnetostatic modes of a ferromagnet slab // J. Phys. Chem. Solids. 1961. Vol. 19. P. 308.

18. Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во Сарат. ун-та, 1994. 312 с.

19. Бегинин Е.Н., Гришин С.В., Шараевский Ю.П., Шешукова С.Е. Электродинамические характеристики периодических и фрактальных волноведущих микроструктур на основе ферритовых пленок // Гетеромагнитная микроэлектроника. 2011, No 9. С. 16.

20. Sirdeshmukh L., Kumar K.K., Laxman S.B. et al. Dielectric properties and electrical conduction in yttrium iron garnet // Bull. Mater. Sci. 1998. Vol. 21, No 3. P. 219.

21. Вайнштейн Л.А. Электромагнитные волны. М.: Радио и связь. 1988.

22. Гинзбург В.Л., Агранович В.М. Кристаллооптика с учетом пространственной дисперсии и теория экситонов // УФН. 1964. Т. 76, вып. 4. С. 643.

 

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Рожнев-IzvVUZ_AND-20-1-143,
author = {А. G. Rozhnev and А. V. Sadovnikov},
title = {ELECTRODYNAMICAL CHARACTERISTICSOF PERIODIC FERROMAGNETIC STRUCTURES},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/electrodynamical-characteristicsof-periodic-ferromagnetic-structures},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-1-143-159},pages = {143--159},issn = {0869-6632},
keywords = {Magnonic crystal,surface magnetostatic waves,finite element method.},
abstract = {The periodic structure consisting of a shallow grooves on a surface of a ferromagnetic film was investigated. The electrodynamical characteristics of propagation of the surface magnetostatic wave in this structure were obtained. The 2D model of the periodical Yttrium Iron Garnet structure was numerically studied by the algorithm based on the Finite Element method. The spatial distribution of the electric and magnetic field components in different points of dispersion characteristics was studied in detail. The comparison of experimental data and numerical results was carried out. }}