ENTROPY AND FORECASTING OF TIME SERIES IN THE THEORY OF DYNAMICAL SYSTEMS
Cite this article as:
Loskutov А. Y., Kozlov А. А., Khakhanov Y. М. ENTROPY AND FORECASTING OF TIME SERIES IN THE THEORY OF DYNAMICAL SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 4, pp. 98-113. DOI: https://doi.org/10.18500/0869-6632-2009-17-4-98-113
A contemporary consideration of such concepts as dimension and entropy of dynamical systems is given. Description of these characteristics includes into the analysis the other notions and properties related to complicated behavior of nonlinear systems as embedding dimension, prediction horizon etc., which are used in the paper. A question concerning the application of these ideas to real observables of the economical origin, i.e. market prices of the companies Schlumberger, Deutsche Bank, Honda, Toyota, Starbucks, BP is studied. By means of the method of singular spectrum analysis the forecasting of the market prices of these companies in different phases of the economical cycle – just before crisis and during the crisis – is given. Main advantages and demerits of the method used are found.
1. Лоскутов А.Ю., Михайлов А.С. Основы теории сложных систем. РХД, 2007.
2. Кроновер Р.М. Фракталы и хаос в динамических системах. Основы теории. М.: Постмаркет, 2000.
3. Кузнецов С.П. Динамический хаос, 2001.
4. Шустер Г.Г. Детерминированный хаос. М.: Мир, 1988.
5. Малинецкий Г.Г., Потапов А.Б. Современные проблемы нелинейной динамики. М.: УРСС, 2002.
6. Петерс Э. Хаос и порядок на рынках капитала. Новый аналитический взгляд на циклы, цены и изменчивость рынка. М.: Мир, 2000.
7. Пу Т. Нелинейная экономическая динамика. УРСС, 2002.
8. Kantz H., Schreiber T. Nonlinear time series analysis. Cambridge University Press, 1997. 304 p.
9. Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.S. The analysis of observed chaotic data in physical systems // Rev. Mod. Phys. 1993. No 65. P. 1331.
10. Mandelbrot B. The Fractal Geometry of Nature. W.H. Freeman and Company. New York, 1983.
11. Главные компоненты временных рядов: метод «Гусеница». Сб. статей / Ред. Д.Л. Данилов, А.А. Жиглявский. СПб: СПб университет, 1997. 308 с.
12. Лоскутов А.Ю., Журавлев Д.И., Котляров О.Л. Применение метода локальной аппроксимации для прогноза экономических показателей // Вопросы анализа и управления риском. 2003. Т. 1, No 1.
13. Истомин И.А., Котляров О.Л., Лоскутов А.Ю. К проблеме обработки временных рядов: расширение возможностей метода локальной аппроксимации посредством сингулярного спектрального анализа // Теоретическая и математическая физика. 2005. Т. 142, No 1.
14. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S. Geometry from a time series // Phys. Rev. Lett. 1980. Vol. 45. P. 712.
15. Takens F. Dynamical systems and turbulence // Lect. Notes in Math, Berlin, Springer. 1981. No 898. P. 336.
16. Grassberger P., Procaccia I. Characterization of strange attractors // Phys. Rev. Lett. 1983. Vol. 50. P. 346.
17. Grassberger P., Procaccia I. Measuring the strangeness of strange attractors // Physica D. 1983. Vol. 9. P. 189.
18. Grassberger P., Procaccia I. Estimation of the Kolmogorov Entropy from a chaotic signal // Phys. Rev. A. 1983. Vol. 28, 4. P. 2591.
19. Илларионов А. Досрочная рецессия. Smart Money. 2008, No 46 (136).
20. Романовский М.Ю., Романовский Ю.М. Введение в эконофизику. Статистические и динамические модели. М.; Ижевск: Институт компьютерных исследований, 2007.
BibTeX
author = {А. Yu. Loskutov and А. А. Kozlov and Yu. М. Khakhanov},
title = {ENTROPY AND FORECASTING OF TIME SERIES IN THE THEORY OF DYNAMICAL SYSTEMS},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/entropy-and-forecasting-of-time-series-in-the-theory-of-dynamical-systems},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-4-98-113},pages = {98--113},issn = {0869-6632},
keywords = {Entropy,time series,chaos,dimension.},
abstract = {A contemporary consideration of such concepts as dimension and entropy of dynamical systems is given. Description of these characteristics includes into the analysis the other notions and properties related to complicated behavior of nonlinear systems as embedding dimension, prediction horizon etc., which are used in the paper. A question concerning the application of these ideas to real observables of the economical origin, i.e. market prices of the companies Schlumberger, Deutsche Bank, Honda, Toyota, Starbucks, BP is studied. By means of the method of singular spectrum analysis the forecasting of the market prices of these companies in different phases of the economical cycle – just before crisis and during the crisis – is given. Main advantages and demerits of the method used are found. }}