EXPERIMENTAL STUDY OF STOCHASTIC PHENOMENA IN A SELF­SUSTAINED OSCILLATOR WITH SUBCRITICAL ANDRONOV–HOPF BIFURCATION


Cite this article as:

Semenov V. V., Listov А. S., Vadivasova Т. Е. EXPERIMENTAL STUDY OF STOCHASTIC PHENOMENA IN A SELF­SUSTAINED OSCILLATOR WITH SUBCRITICAL ANDRONOV–HOPF BIFURCATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 5, pp. 43-57. DOI: https://doi.org/10.18500/0869-6632-2014-22-5-43-57​


The effect of noise on the self­sustained oscillator near subcritical Andronov–Hopf bifurcation is studied in numerical and full­scale experiments. Van der Pol oscillator is chosen as base model for investigation. The influence of both additive and multiplicative Gaussian white noise is considered. The regularities of evolution of the probability distribution in the self­sustained oscillator are analyzed with increase of the noise intensity for the cases of additive and parametric noise. The existence of a bifurcation interval is established experimentally for subcritical Andronov–Hopf bifurcation in the presence of additive noise. Besides of this, the  existence of a bifurcation interval is shown for the tangent bifurcation. The postponed character of the Andronov–Hopf bifurcation is confirmed for a multiplicative (parametric) noise excitation. The results of the full­scale modeling are compared with the numerical data.

DOI: 
10.18500/0869-6632-2014-22-5-43-57​
Literature

1. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987. Horsthemke W., Lefever R. Noise induced transitions. Theory and applications in physics, chemistry and biology. Springer, Berlin, 1984.

2. Arnold L. Random Dynamical System. Berlin: Springer, 2003.

3. Ebeling W., Herzel H., Richert W., Schimansky-Geier L. Influence of noise on Duffing–van der Pol oscillators// Zeischrift angewandte Mathematik und Mechanik (ZAMM). 1986. Vol. 66. P. 141.

4. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.

5. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise // Phys. Rev. F. 1987. Vol. 36. P. 834.

6. Sri Namachchivaya N. Stochastic bifurcation // Appl. Math. And. Computation. 1990. Vol. 38. P. 101.

7. Arnold L., Sri Namachchivaya N., Schenk-Yoppe K.R.  ́ Toward an understanding of stochastic Hopf bifurcation: A base study // Int. J. Bifurcation and Chaos. 1996. Vol. 6. P. 1947.

8. Olarrea J., de la Rubia F.J. Stochastic Hopf bifurcation: The effect of colored noise on the bifurcation interval // Phys. Rev. E. 1996. Vol. 53(1). P. 268.

9. Schenk-Yoppe K.R.  ́ Bifurcation scenarious of the noisy Duffing–van der Pol oscillator // Nonlinear Dynamics. 1996. Vol. 11. P. 255.

10. Bashkirtseva I., Ryashko L., Schurz H. Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances // Chaos, Solitons, and Fractals. 2009. Vol. 39. P. 7.

11. Semenov V.V., Vadivasova T.E., Anishchenko V.S. Experimental investigation of probability distribution in self-sustained oscillators with additive noise// Techn. Physics Letters. 2013. Vol. 39, No 7. P. 632.

12. Семенов В.В., Закорецкий К.В., Вадивасова Т.Е. Экспериментальное исследование стохастической бифуркации Андронова–Хопфа в автогенераторах с аддитивным и параметрическим шумом // Нелинейная динамика. 2013. Т. 9, No 3. С. 1.

13. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б. Анализ индуцированных шумом бифуркаций в системе Хопфа // Изв. вузов. Прикладная нелинейная динамика. 2010. Т. 18, No 1. С. 37.

14. Стратонович Р.Л. Случайные процессы в динамических системах. Москва; Ижевск: Ижевский институт компьютерных исследований, 2009.

15. Ushakov O.V., Wunsche H.-J., Henneberger F., Khovanov I.A., Schimansky-Geier ` L., Zaks M.A. Coherence resonance near a Hopf bifurcation // Phys. Rev. Lett. 2005. Vol. 95. P. 123903(4).

16. Вадивасова Т.Е., Захарова А.С., Анищенко В.С. Индуцированные шумом бифуркации в бистабильном генераторе // Изв. вузов. Прикладная нелинейная динамика. 2009. Т. 17, No 2. С. 114.

17. Zakharova A., Vadivasova T., Anishchenko V., Koseska A., Kurths J. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator // Phys. Rev. E. 2010. Vol. 81(1). P. 011106(1–6).

18. Xu Y., Gu R., Zhang H., Xu W., Duan J. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise // Phys. Rev. E. 2011. Vol. 83(1). P. 056215(1–7).

19. Вадивасова Т.Е., Маляев В.С. Бифуркации в генераторе ван дер Поля с жестким возбуждением в присутствии параметрического шума. Квазигармоническии анализ и численныи эксперимент // Изв. вузов. Прикладная нелинейная динамика. 2013. Т. 21, No 2. С. 113.

20. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Наука, 1981.

21. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физ-матлит, 2002.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Семенов -IzvVUZ_AND-22-5-43,
author = {Vladimir Victorovich Semenov and А. S. Listov and Т. Е. Vadivasova },
title = {EXPERIMENTAL STUDY OF STOCHASTIC PHENOMENA IN A SELF­SUSTAINED OSCILLATOR WITH SUBCRITICAL ANDRONOV–HOPF BIFURCATION},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/experimental-study-of-stochastic-phenomena-in-selfsustained-oscillator-with-subcritical},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-5-43-57​},pages = {43--57},issn = {0869-6632},
keywords = {Subcritical Andronov–Hopf bifurcation,additive noise,parametric noise,stochastic bifurcation,bifurcational interval.},
abstract = {The effect of noise on the self­sustained oscillator near subcritical Andronov–Hopf bifurcation is studied in numerical and full­scale experiments. Van der Pol oscillator is chosen as base model for investigation. The influence of both additive and multiplicative Gaussian white noise is considered. The regularities of evolution of the probability distribution in the self­sustained oscillator are analyzed with increase of the noise intensity for the cases of additive and parametric noise. The existence of a bifurcation interval is established experimentally for subcritical Andronov–Hopf bifurcation in the presence of additive noise. Besides of this, the  existence of a bifurcation interval is shown for the tangent bifurcation. The postponed character of the Andronov–Hopf bifurcation is confirmed for a multiplicative (parametric) noise excitation. The results of the full­scale modeling are compared with the numerical data. }}