FRACTIONAL DIFFUSION EQUATION FOR AGING AND EQUILIBRATED RANDOM WALKS


Cite this article as:

Забурдаев В. Ю., Соколов И. М. FRACTIONAL DIFFUSION EQUATION FOR AGING AND EQUILIBRATED RANDOM WALKS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 4, pp. 79-97. DOI: https://doi.org/10.18500/0869-6632-2009-17-4-79-97


We consider continuous time random walks and discuss situations pertinent to aging. These correspond to the case when the initial state of the system is known not at preparation (at t = 0) but at the later instant of time t1 > 0 (intermediate­time initial condition). We derive the generalized aging diffusion equation for this case and express it through a single memory kernel. The results obtained are applied to the practically relevant case of the equilibrated random walks. We moreover discuss some subtleties in the setup of the aging subdiffusion problem and show that the behavior of the system depends on what was taken as the intermediate­time initial condition: whether it was coordinate of one particle given by measurement or the whole probability distribution. The two setups lead to different predictions for the evolution of a system. This fact stresses the necessity of a precise definition of aging statistical ensembles.

DOI: 
10.18500/0869-6632-2009-17-4-79-97
Literature

1. Montroll E.W. and Shlesinger M.F. Nonequilibrium Phenomena II: From Stochastic to Hydrodynamics. In «Studies in Statistical Mechanics». / Eds. J. Leibowitz and E.W. Montroll. North–Holland, Amsterdam, 1984. Vol. 11. 1.

2. Haus J.W. and Kehr K.W. Phys. Rep. 1987. Vol. 150, No 5-6. 263.

3. Metzler R. and Klafter J. Phys. Rep. 2000. Vol. 339, No 1. 1.

4. Bouchaud J.P. and Georges A. Phys. Rep. 1990. Vol. 195, No 4-5. 127.

5. Struick L.C.E. Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Houston, 1978.

6. Bouchaud J.P., Cugliandolo L.F., Mezard M., and Kurchan J.  ́ In «Spin Glasses and Random Fields». Edited by A.P. Young. Singapore: World Scientific, 1997.

7. Dupuis V., Bert F., Bouchaud J.P., Hammann J., Ladieu F., Parker D., and Vincent E. PRAMANA-J. Phys. 2006. Vol. 64, No 6. 1109.

8. Bellour M., Knaebel A., Harden J.L., Lequeux F. and Munch J.P. Phys. Rev. E. 2003. Vol. 67, No 3. 031405.

9. Abou B., Bonn D., and Meunier J. Phys. Rev. E. 2001. Vol. 64, No 2. 021510.

10. Ovarlez G., Clement E. Phys. Rev. E. 2003. Vol. 68, No 3. 031302.

11. Josserand C., Tkachenko A.V., Mueth D.M., and Jaeger H.M. Phys. Rev. Lett. 2000. Vol. 85, No 17. P. 3632.

12. Havlin S., Kiefer J.E., and Weiss G.H. Phys.Rev. A. 1987. Vol. 36, No 3. 1403.

13. P. Le Doussal, Monthus C. and Fisher D.S. Phys. Rev. E. 1999. Vol. 59, No 5. 4795.

14. Aquino G., Bologna M., Grigolini P., and West B.J. Phys. Rev. E. 2004. Vol. 70, No 3. 036105.

15. Allegrini P., Aquino G., Grigolini P., Palatella L., and Rosa A. Phys. Rev. E. 2003. Vol. 68, No 5. 056123.

16. Barkai E. Phys. Rev. Lett. 2003. Vol. 90, No 10. 104101.

17. Barkai E. and Cheng Y.C., J. Chem Phys. 2003. Vol. 118, No 14. 6167.

18. Sokolov I.M., Blumen A. and Klafter J. Europhys. Lett. 2001. Vol. 56. 175; Sokolov I.M., Blumen A. and Klafter J. Physica A. 2001. Vol. 302. 268.

19. Monthus C. and Bouchaud J.P. J. Phys. A: Math. and Gen. 1996. Vol. 29, No 14. 3847.

20. Havlin S. and Ben-Avraham D. Adv. Phys. 2002. Vol. 51, No 1. 187.

21. Zaburdaev V.Yu. and Chukbar K.V. JETP Lett. 2003. Vol. 77. 551.

22. Chechkin A.V., Gorenflo R. and Sokolov I.M. J. Phys. A: Math. and Gen. 2005. Vol. 38. L679-L684.

23. Gordeche C. and Luck J.M. J. Stat. Phys. 2001. Vol. 104. 489.

24. Scalas E., Gorenflo R., and Mainardi F. Phys. Rev. E. 2004. Vol. 69. 011107.

25. Sokolov I.M., Chechkin A.V., and Klafter J. Acta Physica Polonica B. 2004. Vol. 35. 1323.

26. Tunaley J.K.E. Phys. Rev. Lett. 1974. Vol. 33. 1037.

27. Tunaley J.K.E. J. Stat. Phys. 1976. Vol. 14. 461.

28. Mantegna R.N. and Stanley H.E. Phys. Rev. Lett. 1994. Vol. 73. 2946.

29. Sokolov I.M., Chechkin A.V. and Klafter J. Physica A. 2004. Vol. 336. 245.

30. Barsegov V. and Mukamel S. J. Phys. Chem. A. 2004. Vol. 108. 15.

31. Barkai E. and Sokolov I.M. J. Stat. Mech. 2007. P08001.

32. Chukbar K.V. JETP. 1995. Vol. 81. 1025.

33. Zaburdaev V.Yu. and Chukbar K.V. JETP. 2002. Vol. 94. 252.

34. Jaynes E.T. Phys. Rev. 1957. Vol. 106. 620.

35. Baule A. and Friedrich R. Europhys. Lett. 2007. Vol. 77. 10002.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Забурдаев-IzvVUZ_AND-17-4-79,
author = {V. Yu. Zaburdaev and I. M. Sokolov},
title = {FRACTIONAL DIFFUSION EQUATION FOR AGING AND EQUILIBRATED RANDOM WALKS},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/fractional-diffusion-equation-for-aging-and-equilibrated-random-walks},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-4-79-97},pages = {79--97},issn = {0869-6632},
keywords = {Continuous time random walks,generalized diffusion equation,aging,statistical ensemble.},
abstract = {We consider continuous time random walks and discuss situations pertinent to aging. These correspond to the case when the initial state of the system is known not at preparation (at t = 0) but at the later instant of time t1 > 0 (intermediate­time initial condition). We derive the generalized aging diffusion equation for this case and express it through a single memory kernel. The results obtained are applied to the practically relevant case of the equilibrated random walks. We moreover discuss some subtleties in the setup of the aging subdiffusion problem and show that the behavior of the system depends on what was taken as the intermediate­time initial condition: whether it was coordinate of one particle given by measurement or the whole probability distribution. The two setups lead to different predictions for the evolution of a system. This fact stresses the necessity of a precise definition of aging statistical ensembles. }}